Origin and evolution of the triploid cultivated banana genome – Nature.com

Rouard, M. et al. Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana). Genome Biol. Evol. 10, 31293140 (2018).

CAS PubMed PubMed Central Google Scholar

Langhe, E. D., Vrydaghs, L., Maret, P. D., Perrier, X. & Denham, T. Why bananas matter: an introduction to the history of banana domestication. Ethnobot. Res. Appl. 7, 322326 (2008).

Google Scholar

D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213217 (2012).

Article CAS PubMed Google Scholar

Wang, Z. et al. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants 5, 810821 (2019).

Article CAS PubMed PubMed Central Google Scholar

Davey, M. W. et al. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics 14, 683 (2013).

Article CAS PubMed PubMed Central Google Scholar

de Jesus, O. N. et al. Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol. 13, 41 (2013).

Article PubMed PubMed Central Google Scholar

Martin, G. et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 102, 10081025 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kallow, S. et al. Maximizing genetic representation in seed collections from populations of self and cross-pollinated banana wild relatives. BMC Plant Biol. 21, 415 (2021).

Article CAS PubMed PubMed Central Google Scholar

Martin, G. et al. Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. Plant J. 104, 16981711 (2020).

Article CAS PubMed PubMed Central Google Scholar

Baurens, F. C. et al. Recombination and large structural variations shape interspecific edible bananas genomes. Mol. Biol. Evol. 36, 97111 (2019).

Article CAS PubMed Google Scholar

Belser, C. et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 4, 1047 (2021).

Article CAS PubMed PubMed Central Google Scholar

Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879887 (2018).

Article CAS PubMed Google Scholar

Cenci, A. et al. Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. Ann. Bot. 127, 720 (2021).

Article CAS PubMed Google Scholar

Martin, G. et al. Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea. Plant J. 113, 802818 (2023).

Article CAS PubMed Google Scholar

Lescot, T. Genetic diversity of banana in figures. FruiTrop 189, 5862 (2008).

Google Scholar

Stokstad, E. Banana fungus puts Latin America on alert. Science 365, 207208 (2019).

Article CAS PubMed Google Scholar

Maxmen, A. CRISPR might be the bananas only hope against a deadly fungus. Nature 574, 15 (2019).

Article CAS PubMed Google Scholar

Busche, M. et al. Genome sequencing of Musa acuminata dwarf Cavendish reveals a duplication of a large segment of chromosome 2. G3 10, 3742 (2020).

Article PubMed Google Scholar

Carreel, F. et al. Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45, 679692 (2002).

Article CAS PubMed Google Scholar

Christelov, P. et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 26, 801824 (2017).

Article Google Scholar

Wang, X., Yu, R. & Li, J. Using genetic engineering techniques to develop banana cultivars with Fusarium wilt resistance and ideal plant architecture. Front. Plant Sci. 11, 617528 (2020).

Article PubMed Google Scholar

Stokstad, E. GM banana shows promise against deadly fungus strain. Science 358, 979 (2017).

Article CAS PubMed Google Scholar

Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).

Article PubMed PubMed Central Google Scholar

Tripathi, L., Ntui, V. O. & Tripathi, J. N. CRISPR/Cas9-based genome editing of banana for disease resistance. Curr. Opin. Plant Biol. 56, 118126 (2020).

Article CAS PubMed Google Scholar

Ahmad, F. et al. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 133, 34093418 (2020).

Article CAS PubMed PubMed Central Google Scholar

L, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784791 (2018).

Article PubMed Google Scholar

Thomas, B. C., Pedersen, B. & Freeling, M. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16, 934946 (2006).

Article CAS PubMed PubMed Central Google Scholar

Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722736 (2017).

Article CAS PubMed PubMed Central Google Scholar

Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

Article PubMed PubMed Central Google Scholar

Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 12911305 (2020).

Article CAS PubMed PubMed Central Google Scholar

Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 11741182 (2018).

Article CAS Google Scholar

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

Article CAS PubMed PubMed Central Google Scholar

Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 224 (2019).

Article PubMed PubMed Central Google Scholar

Schneeberger, K. et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc. Natl Acad. Sci. USA 108, 1024910254 (2011).

Article CAS PubMed PubMed Central Google Scholar

Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833845 (2019).

Article CAS PubMed Google Scholar

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289293 (2009).

Article CAS PubMed PubMed Central Google Scholar

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 30943100 (2018).

Article CAS PubMed PubMed Central Google Scholar

Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 22532255 (2020).

Article CAS PubMed Google Scholar

Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).

Article PubMed PubMed Central Google Scholar

Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637644 (2008).

Article CAS PubMed Google Scholar

Brna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

Article PubMed PubMed Central Google Scholar

Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807D811 (2019).

Article CAS PubMed Google Scholar

Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 14941512 (2013).

Article CAS PubMed Google Scholar

Simo, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 32103212 (2015).

Article PubMed Google Scholar

Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 12361240 (2014).

Article CAS PubMed PubMed Central Google Scholar

Kent, W. J. BLATthe BLAST-like alignment tool. Genome Res. 12, 656664 (2002).

CAS PubMed PubMed Central Google Scholar

Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265W268 (2007).

Article PubMed PubMed Central Google Scholar

Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 94519457 (2020).

Article CAS PubMed PubMed Central Google Scholar

Spannagl, M. et al. PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res. 44, D1141D1147 (2016).

Article CAS PubMed Google Scholar

Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics Chapter 4, 10.1 10.14 (2009).

Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462467 (2005).

Read more:
Origin and evolution of the triploid cultivated banana genome - Nature.com

Related Posts