First report on the molecular phylogenetics and population genetics of Aedes aegypti in Iran – Parasites & Vectors – Parasites & Vectors

Escobar D, Ortiz B, Urrutia O, Fontecha G. Genetic diversity among four populations of Aedes aegypti (Diptera: Culicidae) from Honduras as revealed by mitochondrial DNA cytochrome oxidase I. Pathogens. 2022;11:620.

Article PubMed PubMed Central Google Scholar

Azizi K, Dorzaban H, Soltani A, Alipour H, Jaberhashemi SA, Salehi-Vaziri M, et al. Monitoring of dengue virus in field-caught Aedes species (Diptera: Culicidae) by molecular method, from 2016 to 2017 in Southern Iran. J Health Sci Surveill Syst. 2023;11:7783.

Google Scholar

Paksa A, Vahedi M, Yousefi S, Saberi N, Rahimi S, Amin M. Biodiversity of mosquitoes (Diptera: Culicidae), vectors of important arboviral diseases at different altitudes in the central part of Iran. Turk J Zool. 2023;47:1119.

Article CAS Google Scholar

Paksa A, Sedaghat MM, Vatandoost H, Yaghoobi-Ershadi MR, Moosa-Kazemi SH, Hazratian T, et al. Biodiversity of mosquitoes (Diptera: Culicidae) with emphasis on potential arbovirus vectors in East Azerbaijan province, northwestern Iran. J Arthropod Borne Dis. 2019;13:62.

PubMed PubMed Central Google Scholar

Espinal MA, Andrus JK, Jauregui B, Waterman SH, Morens DM, Santos JI, et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. Am J Public Health. 2019;109:38792.

Article PubMed PubMed Central Google Scholar

Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Rodrguez-Morales AJ. Dengue in Honduras and the Americas: the epidemics are back! Travel Med Infect Sci. 2019;31:101456.

Article Google Scholar

Powell JR, Gloria-Soria A, Kotsakiozi P. Recent history of Aedes aegypti: vector genomics and epidemiology records. Bioscience. 2018;68:85460.

Article PubMed PubMed Central Google Scholar

Mattingly P. Taxonomy of Aedes aegypti and related species. Bull World Health Organ. 1967;36:552.

CAS PubMed PubMed Central Google Scholar

Mattingly P. Genetical aspects of the Aedes aegypti problem: I.taxonomy and bionomics. Ann Trop Med Parasitol. 1957;51:392408.

Article CAS PubMed Google Scholar

Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti-a review. Mem Inst Oswaldo Cruz. 2013;108:117.

Article PubMed PubMed Central Google Scholar

McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515:2227.

Article CAS PubMed PubMed Central Google Scholar

Heydari M, Metanat M, Rouzbeh-Far M-A, Tabatabaei SM, Rakhshani M, Sepehri-Rad N, et al. Dengue fever as an emerging infection in southeast Iran. Am J Trop Med Hyg. 2018;98:1469.

Article PubMed PubMed Central Google Scholar

Ziyaeyan M, Behzadi MA, Leyva-Grado VH, Azizi K, Pouladfar G, Dorzaban H, et al. Widespread circulation of West Nile virus, but not Zika virus in southern Iran. PLoS Negl Trop Dis. 2018;12:e0007022.

Article PubMed PubMed Central Google Scholar

Bakhshi H, Mousson L, Moutailler S, Vazeille M, Piorkowski G, Zakeri S, et al. Detection of arboviruses in mosquitoes: evidence of circulation of chikungunya virus in Iran. PLoS Negl Trop Dis. 2020;14:e0008135.

Article PubMed PubMed Central Google Scholar

Vasmehjani AA, Rezaei F, Farahmand M, Mokhtari-Azad T, Yaghoobi-Ershadi MR, Keshavarz M, et al. Epidemiological evidence of mosquito-borne viruses among persons and vectors in Iran: a study from North to South. Virol Sin. 2022;37:149.

Article Google Scholar

Moutailler S, Yousfi L, Mousson L, Devillers E, Vazeille M, Vega-Ra A, et al. A new high-throughput tool to screen mosquito-borne viruses in Zika virus endemic/epidemic areas. Viruses. 2019;11:904.

Article CAS PubMed PubMed Central Google Scholar

Naficy K, Saidi S. Serological survey on viral antibodies in Iran. Trop Geogr Med. 1970;22:1838.

CAS PubMed Google Scholar

Saidi RTS, Javadian E, Nadim A, Seedi-Rashti M. The distribution and prevalence of human infection with phlebotomus fever group viruses in Iran. Iran J Public Health. 1976;5:17.

Google Scholar

Sharifi Z, Shooshtari MM, Talebian A. A study of West Nile virus infection in Iranian blood donors. Arch Iran Med. 2010;13:14.

PubMed Google Scholar

Ahmadnejad F, Otarod V, Fallah M, Lowenski S, Sedighi-Moghaddam R, Zavareh A, et al. Spread of West Nile virus in Iran: a cross-sectional serosurvey in equines, 20082009. Epidemiol Infect. 2011;139:158793.

Article CAS PubMed Google Scholar

Bagheri M, Terenius O, Oshaghi MA, Motazakker M, Asgari S, Dabiri F, et al. West Nile virus in mosquitoes of Iranian wetlands. Vector-Borne Zoonot Dis. 2015;15:7504.

Article Google Scholar

Shahhosseini N, Chinikar S, Moosa-Kazemi SH, Sedaghat MM, Kayedi MH, Lhken R, et al. West Nile Virus lineage-2 in Culex specimens from Iran. Trop Med Int Health. 2017;22:13439.

Article CAS PubMed Google Scholar

Guillemaud T, Beaumont MA, Ciosi M, Cornuet J-M, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity. 2010;104:8899.

Article CAS PubMed Google Scholar

Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al. Tiger on the prowl: invasion history and spatio-temporal genetic structure of the Asian tiger mosquito Aedes albopictus (Skuse 1894) in the Indo-Pacific. PLoS Negl Trop Dis. 2017;11:e0005546.

Article PubMed PubMed Central Google Scholar

Paupy C, Chantha N, Huber K, Lecoz N, Reynes J-M, Rodhain F, et al. Influence of breeding sites features on genetic differentiation of Aedes aegypti populations analyzed on a local scale in Phnom Penh Municipality of Cambodia. Am J Trop Med Hyg. 2004;71:7381.

Article PubMed Google Scholar

Hendry AP, Day T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol. 2005;14:90116.

Article CAS PubMed Google Scholar

Tabachnick WJ, Powell JR. A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res. 1979;34:21529.

Article CAS PubMed Google Scholar

Tabachnick WJ, Munstermann LE, Powell JR. Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution. 1979;33:28795.

Article PubMed Google Scholar

Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, et al. Worldwide patterns of genetic differentiation imply multiple domestications of Aedes aegypti, a major vector of human diseases. Proc R Soc B Biol Sci. 2011;278:244654.

Article Google Scholar

Gloria-Soria A, Brown JE, Kramer V, Hardstone Yoshimizu M, Powell JR. Origin of the dengue fever mosquito, Aedes aegypti, in California. PLoS Negl Trop Dis. 2014;8:e3029.

Article PubMed PubMed Central Google Scholar

Brown JE, Scholte E-J, Dik M, Den Hartog W, Beeuwkes J, Powell JR. Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerg Infect Dis. 2011;17:2335.

Article PubMed PubMed Central Google Scholar

Bennett KL, Shija F, Linton YM, Misinzo G, Kaddumukasa M, Djouaka R, et al. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? Mol Ecol. 2016;25:433754.

Article PubMed Google Scholar

Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife. 2020;9:e51701.

Article CAS PubMed PubMed Central Google Scholar

Bennett KL, McMillan WO, Loaiza JR. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol Appl. 2021;14:130113.

Article PubMed PubMed Central Google Scholar

Gloria-Soria A, Lima A, Lovin DD, Cunningham JM, Severson DW, Powell JR. Origin of a high-latitude population of Aedes aegypti in Washington, DC. Am J Trop Med Hyg. 2018;98:445.

Article PubMed Google Scholar

Elnour MAB, Moustafa MAM, Khogali R, Azrag RS, Alanazi AD, Kheir A, et al. Distinct haplotypes and free movement of Aedes aegypti in Port Sudan, Sudan. J Appl Entomol. 2020;144:81723.

Article CAS Google Scholar

Elnour M-AB, Gloria-Soria A, Azrag RS, Alkhaibari AM, Powell JR, Salim B. Population genetic analysis of Aedes aegypti mosquitoes from Sudan revealed recent independent colonization events by the two subspecies. Front Genet. 2022;13:825652.

Article PubMed PubMed Central Google Scholar

ztrk M, Akiner MM. Molecular phylogenetics of Aedes aegypti (L., 1762)(Diptera: Culicidae) in Eastern Black Sea area of Turkey and possible relations with the Caucasian invasion. Turk J Zool. 2023;47:15569.

Article Google Scholar

Abuelmaali SA, Jamaluddin JAF, Noaman K, Allam M, Abushama HM, Elnaiem DE, et al. Distribution and genetic diversity of Aedes aegypti subspecies across the Sahelian Belt in Sudan. Pathogens. 2021;10:78.

Article CAS PubMed PubMed Central Google Scholar

Abuelmaali SA, Jamaluddin JAF, Allam M, Abushama HM, Elnaiem DE, Noaman K, et al. Genetic polymorphism and phylogenetics of Aedes aegypti from Sudan based on ND4 mitochondrial gene variations. Insects. 2022;13:1144.

Article PubMed PubMed Central Google Scholar

Silver JB. Mosquito ecology: field sampling methods. Berlin: Springer Science & Business Media; 2007.

Google Scholar

Azari-Hamidian S, Harbach RE. Keys to the adult females and fourth-instar larvae of the mosquitoes of Iran (Diptera: Culicidae). Zootaxa. 2009;2078:133.

Article Google Scholar

Rueda LM. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa. 2004;589:160.

Article Google Scholar

Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:3741.

Article CAS PubMed Google Scholar

Hickey DA, Mitchell A, Sperling FA. Higher-level phylogeny of mosquitoes (Diptera: Culicidae): mtDNA data support a derived placement for Toxorhynchites. Insect Syst Evol. 2002;33:16374.

Article Google Scholar

Chaiphongpachara T, Changbunjong T, Laojun S, Nutepsu T, Suwandittakul N, Kuntawong K, et al. Mitochondrial DNA barcoding of mosquito species (Diptera: Culicidae) in Thailand. PLoS ONE. 2022;17:e0275090.

Article CAS PubMed PubMed Central Google Scholar

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380.

Article CAS PubMed PubMed Central Google Scholar

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:958.

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:14512.

Article CAS PubMed Google Scholar

Rozas J, Ferrer-Mata A, Snchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299302.

Article CAS PubMed Google Scholar

Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:43760.

See the original post here:
First report on the molecular phylogenetics and population genetics of Aedes aegypti in Iran - Parasites & Vectors - Parasites & Vectors

Related Posts