For the promise of personalized medicine to be realized, a thorough understanding of the molecular underpinnings of health and disease is required. Advances in analytical technologies such as mass spectrometry (MS) have certainly strengthened our knowledge of cell biology, permitting a deeper look at how, and when, cells go awry in clinical specimens when compared to healthy cells. Over recent years it has become increasingly clear that for these molecular insights to be translated into the clinical space and impact patient care, spatial context is necessary.To provide spatially resolved molecular analyses of clinical specimens in a high-throughput and sensitive manner, matrixassisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) have been coupled together. However, the complexity of such experiments has required separate instrumentation that is, until now.Ron Heeren is a distinguished professor and the scientific director of the Maastricht MultiModal Molecular Imaging Institute at the University of Maastricht. His research interests include the energetics of macromolecular systems, conformational studies of non-covalently bound protein complexes, and translational imaging research, to name just a few examples.Prof. Heeren's research group recently embarked on a study to bring together the spatial molecular information that is provided by MALDI-MSI with the microproteomic characterization generated by LC-MS on the same tissue specimen, on a single instrument. Heeren and colleagues were successful in this feat, and their work is published in the journal Proteomics.1 The paper forms the basis of this interview, in which Technology Networks discusses the motivations and logistics behind the research with Heeren, in addition to reviewing the current state-of-play of the spatial omics research field.Molly Campbell (MC): Why is it important to connect different types of omics data via the spatial context, specifically in clinical research?Ron Heeren (RH): In clinical research it is all about context. It is important to understand that a biopsy can be very heterogeneous and does not always show which particular cell (out of thousands) is actually derailed or diseased. Being able to put molecular signals in the context undiluted of where they come from, is incredibly important. A lot of scientists work with blood-borne diagnostics, which is great, but also means that if you have a very tiny tumor or disease area in your body, your biomarker profile is going to be very diluted. Additionally, it is next to impossible to understand the full complexity of a disease from a single blood sample. For us, it is very important to understand molecular signals and cells in their spatial context, directly in the tissue.
There are many different ways of doing this. We like molecular imaging, because not only does it show us a specific molecule or a set of molecules, but it also shows their spatial distribution and spatial organization. Understanding the spatial organization of molecules in the context of disease is everything for us. But, generating images themselves is sometimes not enough you also want to dive into the depth of the -ome, whether it is the proteome, metabolome, or the lipidome.
Being able to look at the spatial context and organization and combine that with in-depth omics screening in the spatial context, essentially provides you with everything that you need in one go. The ability to do this on a single instrument, where we get the same type of data, the same spatial resolution and the same molecular resolution is crucial.
Molecular pathology needs to be completed in a clinically relevant timeframe. In the past, we have might conducted an imaging experiment and then proceeded with our business and prepare the images. Later, we would extract some cells and extracts from proteins and do a six-hour protein analysis experiment to understand cellular signalling in great detail. But if a patient is on the table of a surgeon, we want that information now. We need that information as soon as possible.
Data integration is a crucial aspect of this research getting all this data at in context together. Only then can you really understand the specifics of the progression of a disease. Once you understand that, you can come up with a more targeted, or perhaps personalized, precise treatment.
MC: What have been some of the key challenges in this space over recent years?RH: I already talked about one challenge, and that's throughput. A couple of years ago, Bruker introduced the rapifleX, which really sped up our work and allowed us to translate our molecular diagnostic imaging into a clinical context. But it did not have the omics part of the part of spatial analysis. Now that we have the timsTOF flex, which combines both imaging and the omics analysis, that particular challenge has been addressed.
If I look at tissue from a biopsy, or a resected piece of tissue, I can make tissue sections and I can image these sections. Five years ago, we would have been very happy to obtain a 50-micron high-throughput image. But that does not give us the required information for one single derailed cell; it maybe provides us with a group of 25 cells where something is going wrong.
One of the challenges here was to go down to spatial resolutions that allow us to analyze individual cells, and that is essentially what we've recently been doing in close collaboration with Bruker. We have created a way to integrate single-cell profiling into our imaging workflow.
Throughput and spatial resolution are challenges that we have tackled, and these are all related to sensitivity. Let's face it, if you have poorly sensitive instruments then it's going to be very difficult to conduct research in high-throughput because you will miss a lot of subtle molecular detail that you want to see.
MC: Please can you talk to us about your recent study, in which you were able to conduct lipid-based MSI and LC-MS on a single instrument? Why hasn't this been possible before? What were your motivations for conducting this work?RH: One of the challenges that we faced was identifying the right cells in a piece of tissue to subject to a proteome analysis. We want to take an in-depth look at the proteome in a number of derailed cells, such as cancer cells, and sometimes the cells have changed on a molecular level but not on a morphological level. If they have not changed morphologically, a simple optical imaging experiment will not allow you to see what the derailed cells are.
So, we wanted to use a molecular imaging approach MALDI-MSI to help us to find the right cells from the LC-MS analysis. This adds a layer of molecular information on top of the morphological images.
In the past, we would have conducted these experiments separately; we would run a separate MALDI imaging experiment, figure out where everything is, and then cut out a certain area and conduct proteomics analysis. Now with the timsTOF fleX, we can make a lipid image, and use lipids that are specific for, let's say a specific cancer, go to our laser capture microdissection microscope, cut out the cells that have been identified with lipid MSI, extract the proteins and run them timsTOF fleX with the PASEF approach. This approach allows us to extract more than 4000 different protein from only 2000 cells. This was not possible in the past, it was very difficult because you had to continuously look at different data from different instruments, make pieces of software that would translate one result to the other, and then in the end, manually connect the dots.
Now, with the spatial omics pipeline, we essentially have all these elements based on data that is taken from the same tissue or the same instrument. That improves throughput, it improves interpretability and it improves our capabilities to identify the relevant molecules for a specific disease. On top of that, it helps us to connect the dots between the different omics levels. For instance, we do lipidome based imaging, and we have a proteome panel for a certain area, and we can connect those dots. We can figure out which proteins are involved in these different lipid expression patterns locally, in the context of an entire cell in the context of an entire tissue.
MC: You applied the method to study a breast cancer sample. Can you discuss some of the key results?RH: First, on the lipid side, we found out that a very specific set of lipids are related to hypoxia and are indicative of early molecular changes in breast cancer. This allowed us to identify cells that the pathologist was not able to see. On top of that, we found out that there were proteins involved in this lipid synthesis pathway from a protein analysis that corroborated that result. We were able to see the interplay between proteins and lipids locally in these breast cancer samples that were taken from patients. With that, we essentially have a new diagnostic approach to come up with improved treatments for our patients.
MC: Are there any data handling challenges associated with combining MSI and LC/MS on the same instrument?RH: Yes. The challenge, of course, is that the imaging experiments produce tonnes of data, especially at the level of detail that we are able to go into now. And the experiments do this in a relatively limited amount of time. In other words, our data pipeline is not only solidly filled, it is almost bursting, to the extent that we actually have a challenge in keeping up with the experiments. In the past the throughput of the instrument was the limiting factor, but right now the data handling is essentially the limiting factor.
Fortunately, with help from the guys at ScILS, there are now tools in place that help us to deal with this data that actually make it manageable, from the classification perspective, and from the interpretation perspective. When we do these imaging experiments on for instance, metabolites, we use MetaboScape or Lipostar for molecular identification. These types of tools are crucial.
I think these will be the biggest challenges that the field as a whole faces in the future, because we can produce data galore but if we don't have the tools to interpret them, then it's lots of data but little information. We are working with several different partners in the field to solve that problem.
It is also an important problem because of the clinical context. We conduct this work in close collaboration with surgeons and pathologists. These pathologists are not mass spectrometrists, so how will they understand what we are trying to tell them? We need new tools to implement our findings in the workflows and in the systems used by pathologists. this will help to increase the acceptance of these new technologies as novel diagnostic tools in a surgical setting.
It's crucial for us to come up with ways to take care of what we call the translational side of our spatial omics approach, and that's also where data handling data reduction, data visualization in an intuitive environment are very, very important.
MC: How do you envision the development of this workflow will influence other omics research groups? What advice would you give them if they are considering adopting the workflow?RH: One thing that we found out from a device perspective is that looking at the problem at different angles is very, very important. Just looking at proteins gives you one view, looking at metabolites gives you another view, and the same for lipids. If you put everything together in a spatial context with imaging, you have another view of the same problem. Really, the integrative aspects of multi-level omics and imaging is what is crucial. That is what really reveals the complexity if health and disease. The advice that I would give to people starting in this field is to make sure you cover your bases. Get good mass spectrometers that are capable of delivering detailed information at all these different levels and set up the right workflow and protocols. Also make sure you have the right software tools to take care of data integration.
MC: What will be your next steps in this research space?RH: To provide an idea of where this is going now, a lot of the work we are doing is in pushing the spatial limits. We have just started a new collaboration with our surgical colleagues, and we are applying this method for organoid screening. We're developing ways to look at omics and imaging on patient-derived organoids to assess what the best treatment protocol for a patient is, based on cells that have been taken out of a tumor, grown in the lab and treated with different drugs. We like to use this workflow to understand what the effects of the drugs are. We are working with osteoarthritis in collaboration with our orthopedics department, where they are pursuing empirical regenerative therapies. So how do they really work at the molecular level? This combination of imaging and omics really shows the orthopedic department how their regenerative therapies work. All this information brought together gives us the insight as to what the best therapy for these patients is. We will keep on pushing the boundaries of translational molecular imaging to provide further insights in the molecular heterogeneity of health and disease.
Ron Heeren was speaking with Molly Campbell, Science Writer for Technology Networks.
Professor Ron Heeren. Credit: Harry Heuts.
Reference:
1. Dewez F, Oejten J, Henkel C, et al. MS imaging-guided microproteomics for spatial omics on a single instrument. PROTEOMICS. 2020;1900369. doi:10.1002/pmic.201900369
Read more:
Pushing the Boundaries of Translational Molecular Imaging - Technology Networks
- The biotech bi-weekly: optimizing qPCR and spatial biology research, making cell cultivation more sustainable and ushering in a new era of drug... - March 5th, 2025 [March 5th, 2025]
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]