Adding intrinsically disordered proteins to biological ageing clocks – Nature.com

Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 186, 37583775 (2023).

Article CAS PubMed PubMed Central Google Scholar

Lpez-Otn, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243278 (2023).

Article PubMed Google Scholar

Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 10961106 (2021).

Article PubMed PubMed Central Google Scholar

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371384 (2018).

Article CAS PubMed Google Scholar

Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882895 (2018).

Article CAS PubMed PubMed Central Google Scholar

Lee, H. Y., Lee, S. D. & Shin, K.-J. Forensic DNA methylation profiling from evidence material for investigative leads. BMB Rep. 49, 359369 (2016).

Article CAS PubMed PubMed Central Google Scholar

Jackson, S. H. D., Weale, M. R. & Weale, R. A. Biological agewhat is it and can it be measured? Arch. Gerontol. Geriatr. 36, 103115 (2003).

Article PubMed Google Scholar

Vaiserman, A. & Krasnienkov, D. Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front. Genet. 11, 630186 (2020).

Article CAS PubMed Google Scholar

Babu, M. M., Kriwacki, R. W. & Pappu, R. V. Structural biology. Versatility from protein disorder. Science 337, 14601461 (2012).

Article CAS PubMed Google Scholar

Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197208 (2005).

Article CAS PubMed Google Scholar

Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329332 (1999).

Article CAS PubMed Google Scholar

Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701710 (2023).

Article CAS PubMed Google Scholar

Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139143 (2022).

Article CAS PubMed Google Scholar

Chatani, E. & Yamamoto, N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 10, 527534 (2018).

Article CAS PubMed Google Scholar

Ke, P. C. et al. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 49, 54735509 (2020).

Article CAS PubMed PubMed Central Google Scholar

Dobson, C. M., Knowles, T. P. J. & Vendruscolo, M. The amyloid phenomenon and its significance in biology and medicine. Cold Spring Harb. Perspect. Biol. 12, a033878 (2020).

Article CAS PubMed PubMed Central Google Scholar

Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 2768 (2017).

Article CAS PubMed Google Scholar

Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755773 (2018).

Article CAS PubMed Google Scholar

Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196213 (2021).

Article CAS PubMed Google Scholar

Vendruscolo, M. & Fuxreiter, M. Sequence determinants of the aggregation of proteins within condensates generated by liquid-liquid phase separation. J. Mol. Biol. 434, 167201 (2022).

Article CAS PubMed Google Scholar

Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu Rev. Genet 53, 171194 (2019).

Article CAS PubMed Google Scholar

Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 13171321 (2000).

Article CAS PubMed Google Scholar

Serio, T. R. & Lindquist, S. L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98105 (2000).

Article CAS PubMed Google Scholar

ari, A., Chebaro, Y. C., Knowles, T. P. J. & Frenkel, D. Crucial role of non-specific interactions in amyloid nucleation. Proc. Natl Acad. Sci. USA 111, 1786917874 (2014).

Article PubMed PubMed Central Google Scholar

Ray, S. et al. Mass photometric detection and quantification of nanoscale -synuclein phase separation. Nat. Chem. 15, 13061316 (2023).

Article CAS PubMed Google Scholar

Kar, M. et al. Phase separating RNA binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc. Natl Acad. Sci. USA 119, e2202222119 (2022).

Article CAS PubMed PubMed Central Google Scholar

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

Article PubMed Google Scholar

Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420435 (2018).

Article CAS PubMed PubMed Central Google Scholar

Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 10661077 (2015).

Article CAS PubMed Google Scholar

Zhang, P. et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8, e39578 (2019).

Article PubMed PubMed Central Google Scholar

Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).

Article CAS PubMed PubMed Central Google Scholar

Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 13401349 (2023).

Article CAS PubMed PubMed Central Google Scholar

Emmanouilidis, L. et al. A solid beta-sheet structure is formed at the surface of FUS droplets during aging. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01573-w (2024).

Article PubMed Google Scholar

Lashuel, H. A. Rethinking protein aggregation and drug discovery in neurodegenerative diseases: why we need to embrace complexity? Curr. Opin. Chem. Biol. 64, 6775 (2021).

Article CAS PubMed Google Scholar

Bolognesi, B. et al. The mutational landscape of a prion-like domain. Nat. Commun. 10, 4162 (2019).

Article PubMed PubMed Central Google Scholar

Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435464 (2015).

Article CAS PubMed PubMed Central Google Scholar

Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421435 (2019).

Article CAS PubMed Google Scholar

Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753756 (2017).

Article CAS PubMed Google Scholar

Gallotta, I. et al. Extracellular proteostasis prevents aggregation during pathogenic attack. Nature 584, 410414 (2020).

Article CAS PubMed Google Scholar

Rutledge, B. S., Choy, W.-Y. & Duennwald, M. L. Folding or holding?Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J. Biol. Chem. 298, 101905 (2022).

Article CAS PubMed PubMed Central Google Scholar

Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706719.e13 (2018).

Article CAS PubMed Google Scholar

Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693705.e22 (2018).

Article CAS PubMed PubMed Central Google Scholar

Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of rna-binding proteins with prion-like domains. Cell 173, 677692.e20 (2018).

Article CAS PubMed PubMed Central Google Scholar

Milles, S. et al. Facilitated aggregation of FG nucleoporins under molecular crowding conditions. EMBO Rep. 14, 178183 (2013).

Article CAS PubMed Google Scholar

Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 16691687 (2017).

Article CAS PubMed PubMed Central Google Scholar

Bah, A. & Forman-Kay, J. D. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 66966705 (2016).

Article CAS PubMed PubMed Central Google Scholar

Hofweber, M. & Dormann, D. Friend or foePost-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 71377150 (2019).

Article CAS PubMed Google Scholar

Simandi, Z. et al. Arginine methyltransferase PRMT8 provides cellular stress tolerance in aging motoneurons. J. Neurosci. 38, 76837700 (2018).

Article CAS PubMed PubMed Central Google Scholar

Das, T. et al. Metastable condensates suppress conversion to amyloid fibrils. Preprint at bioRxiv https://doi.org/10.1101/2024.02.28.582569 (2024).

Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321338.e8 (2019).

Article CAS PubMed PubMed Central Google Scholar

Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918921 (2018).

Continued here:
Adding intrinsically disordered proteins to biological ageing clocks - Nature.com

Related Posts