Immunology – Wikipedia

Immunology is a branch of biomedical science that covers the study of immune systems in all organisms.[1] It charts, measures, and contextualizes the: physiological functioning of the immune system in states of both health and diseases; malfunctions of the immune system in immunological disorders (such as autoimmune diseases, hypersensitivities, immune deficiency, and transplant rejection); the physical, chemical and physiological characteristics of the components of the immune system in vitro, in situ, and in vivo. Immunology has applications in numerous disciplines of medicine, particularly in the fields of organ transplantation, oncology, virology, bacteriology, parasitology, psychiatry, and dermatology.

Prior to the designation of immunity from the etymological root immunis, which is Latin for "exempt"; early physicians characterized organs that would later be proven as essential components of the immune system. The important lymphoid organs of the immune system are the thymus and bone marrow, and chief lymphatic tissues such as spleen, tonsils, lymph vessels, lymph nodes, adenoids, and liver. When health conditions worsen to emergency status, portions of immune system organs including the thymus, spleen, bone marrow, lymph nodes and other lymphatic tissues can be surgically excised for examination while patients are still alive.

Many components of the immune system are typically cellular in nature and not associated with any specific organ; but rather are embedded or circulating in various tissues located throughout the body.

Classical immunology ties in with the fields of epidemiology and medicine. It studies the relationship between the body systems, pathogens, and immunity. The earliest written mention of immunity can be traced back to the plague of Athens in 430 BCE. Thucydides noted that people who had recovered from a previous bout of the disease could nurse the sick without contracting the illness a second time. Many other ancient societies have references to this phenomenon, but it was not until the 19th and 20th centuries before the concept developed into scientific theory.

The study of the molecular and cellular components that comprise the immune system, including their function and interaction, is the central science of immunology. The immune system has been divided into a more primitive innate immune system and, in vertebrates, an acquired or adaptive immune system. The latter is further divided into humoral (or antibody) and cell-mediated components.

The humoral (antibody) response is defined as the interaction between antibodies and antigens. Antibodies are specific proteins released from a certain class of immune cells known as Blymphocytes, while antigens are defined as anything that elicits the generation of antibodies ("anti"body "gen"erators). Immunology rests on an understanding of the properties of these two biological entities and the cellular response to both.

Immunological research continues to become more specialized, pursuing non-classical models of immunity and functions of cells, organs and systems not previously associated with the immune system (Yemeserach 2010).

Clinical immunology is the study of diseases caused by disorders of the immune system (failure, aberrant action, and malignant growth of the cellular elements of the system). It also involves diseases of other systems, where immune reactions play a part in the pathology and clinical features.

The diseases caused by disorders of the immune system fall into two broad categories:

Other immune system disorders include various hypersensitivities (such as in asthma and other allergies) that respond inappropriately to otherwise harmless compounds.

The most well-known disease that affects the immune system itself is AIDS, an immunodeficiency characterized by the suppression of CD4+ ("helper") T cells, dendritic cells and macrophages by the Human Immunodeficiency Virus (HIV).

Clinical immunologists also study ways to prevent the immune system's attempts to destroy allografts (transplant rejection).

The bodys capability to react to antigen depends on a person's age, antigen type, maternal factors and the area where the antigen is presented.[2]Neonates are said to be in a state of physiological immunodeficiency, because both their innate and adaptive immunological responses are greatly suppressed. Once born, a childs immune system responds favorably to protein antigens while not as well to glycoproteins and polysaccharides. In fact, many of the infections acquired by neonates are caused by low virulence organisms like Staphylococcus and Pseudomonas. In neonates, opsonic activity and the ability to activate the complement cascade is very limited. For example, the mean level of C3 in a newborn is approximately 65% of that found in the adult. Phagocytic activity is also greatly impaired in newborns. This is due to lower opsonic activity, as well as diminished up-regulation of integrin and selectin receptors, which limit the ability of neutrophils to interact with adhesion molecules in the endothelium. Their monocytes are slow and have a reduced ATP production, which also limits the newborn's phagocytic activity. Although, the number of total lymphocytes is significantly higher than in adults, the cellular and humoral immunity is also impaired. Antigen-presenting cells in newborns have a reduced capability to activate Tcells. Also, Tcells of a newborn proliferate poorly and produce very small amounts of cytokines like IL-2, IL-4, IL-5, IL-12, and IFN-g which limits their capacity to activate the humoral response as well as the phagocitic activity of macrophage. Bcells develop early during gestation but are not fully active.[3]

Maternal factors also play a role in the bodys immune response. At birth, most of the immunoglobulin present is maternal IgG. Because IgM, IgD, IgE and IgA dont cross the placenta, they are almost undetectable at birth. Some IgA is provided by breast milk. These passively-acquired antibodies can protect the newborn for up to 18 months, but their response is usually short-lived and of low affinity.[3] These antibodies can also produce a negative response. If a child is exposed to the antibody for a particular antigen before being exposed to the antigen itself then the child will produce a dampened response. Passively acquired maternal antibodies can suppress the antibody response to active immunization. Similarly the response of T-cells to vaccination differs in children compared to adults, and vaccines that induce Th1 responses in adults do not readily elicit these same responses in neonates.[3] Between six and nine months after birth, a childs immune system begins to respond more strongly to glycoproteins, but there is usually no marked improvement in their response to polysaccharides until they are at least one year old. This can be the reason for distinct time frames found in vaccination schedules.[4][5]

During adolescence, the human body undergoes various physical, physiological and immunological changes triggered and mediated by hormones, of which the most significant in females is 17--oestradiol (an oestrogen) and, in males, is testosterone. Oestradiol usually begins to act around the age of 10 and testosterone some months later.[6] There is evidence that these steroids act directly not only on the primary and secondary sexual characteristics but also have an effect on the development and regulation of the immune system,[7] including an increased risk in developing pubescent and post-pubescent autoimmunity.[8] There is also some evidence that cell surface receptors on B cells and macrophages may detect sex hormones in the system.[9]

The female sex hormone 17--oestradiol has been shown to regulate the level of immunological response,[10] while some male androgens such as testosterone seem to suppress the stress response to infection. Other androgens, however, such as DHEA, increase immune response.[11] As in females, the male sex hormones seem to have more control of the immune system during puberty and post-puberty than during the rest of a male's adult life.

Physical changes during puberty such as thymic involution also affect immunological response.[12]

The use of immune system components to treat a disease or disorder is known as immunotherapy. Immunotherapy is most commonly used in the context of the treatment of cancers together with chemotherapy (drugs) and radiotherapy (radiation). However, immunotherapy is also often used in the immunosuppressed (such as HIV patients) and people suffering from other immune deficiencies or autoimmune diseases. This includes regulating factors such as IL-2, IL-10, GM-CSF B, IFN-.

The specificity of the bond between antibody and antigen has made the antibody an excellent tool for the detection of substances by a variety of diagnostic techniques. Antibodies specific for a desired antigen can be conjugated with an isotopic (radio) or fluorescent label or with a color-forming enzyme in order to detect it. However, the similarity between some antigens can lead to false positives and other errors in such tests by antibodies cross-reacting with antigens that aren't exact matches.[13]

The study of the interaction of the immune system with cancer cells can lead to diagnostic tests and therapies with which to find and fight cancer.

This area of the immunology is devoted to the study of immunological aspects of the reproductive process including fetus acceptance. The term has also been used by fertility clinics to address fertility problems, recurrent miscarriages, premature deliveries and dangerous complications such as pre-eclampsia.

Immunology is strongly experimental in everyday practice but is also characterized by an ongoing theoretical attitude. Many theories have been suggested in immunology from the end of the nineteenth century up to the present time. The end of the 19th century and the beginning of the 20th century saw a battle between "cellular" and "humoral" theories of immunity. According to the cellular theory of immunity, represented in particular by Elie Metchnikoff, it was cells more precisely, phagocytes that were responsible for immune responses. In contrast, the humoral theory of immunity, held by Robert Koch and Emil von Behring, among others, stated that the active immune agents were soluble components (molecules) found in the organisms humors rather than its cells.[14][15][16]

In the mid-1950s, Frank Burnet, inspired by a suggestion made by Niels Jerne,[17] formulated the clonal selection theory (CST) of immunity.[18] On the basis of CST, Burnet developed a theory of how an immune response is triggered according to the self/nonself distinction: "self" constituents (constituents of the body) do not trigger destructive immune responses, while "nonself" entities (e.g., pathogens, an allograft) trigger a destructive immune response.[19] The theory was later modified to reflect new discoveries regarding histocompatibility or the complex "two-signal" activation of T cells.[20] The self/nonself theory of immunity and the self/nonself vocabulary have been criticized,[16][21][22] but remain very influential.[23][24]

More recently, several theoretical frameworks have been suggested in immunology, including "autopoietic" views,[25] "cognitive immune" views,[26] the "danger model" (or "danger theory"),[21] and the "discontinuity" theory.[27][28] The danger model, suggested by Polly Matzinger and colleagues, has been very influential, arousing many comments and discussions.[29][30][31][32]

According to the American Academy of Allergy, Asthma, and Immunology (AAAAI), "an immunologist is a research scientist who investigates the immune system of vertebrates (including the human immune system). Immunologists include research scientists (PhDs) who work in laboratories. Immunologists also include physicians who, for example, treat patients with immune system disorders. Some immunologists are physician-scientists who combine laboratory research with patient care."[33]

Bioscience is the overall major in which undergraduate students who are interested in general well-being take in college. Immunology is a branch of bioscience for undergraduate programs but the major gets specified as students move on for graduate program in immunology. The aim of immunology is to study the health of humans and animals through effective yet consistent research, (AAAAI, 2013).[34] The most important thing about being immunologists is the research because it is the biggest portion of their jobs.[35]

Most graduate immunology schools follow the AAI courses immunology which are offered throughout numerous schools in the United States.[36] For example, in New York State, there are several universities that offer the AAI courses immunology: Albany Medical College, Cornell University, Icahn School of Medicine at Mount Sinai, New York University Langone Medical Center, University at Albany (SUNY), University at Buffalo (SUNY), University of Rochester Medical Center and Upstate Medical University (SUNY). The AAI immunology courses include an Introductory Course and an Advance Course.[37]The Introductory Course is a course that gives students an overview of the basics of immunology.

In addition, this Introductory Course gives students more information to complement general biology or science training. It also has two different parts: Part I is an introduction to the basic principles of immunology and Part II is a clinically-oriented lecture series. On the other hand, the Advanced Course is another course for those who are willing to expand or update their understanding of immunology. It is advised for students who want to attend the Advanced Course to have a background of the principles of immunology.[38] Most schools require students to take electives in other to complete their degrees. A Masters degree requires two years of study following the attainment of a bachelor's degree. For a doctoral programme it is required to take two additional years of study.[39]

The expectation of occupational growth in immunology is an increase of 36 percent from 2010 to 2020.[40] The median annual wage was $76,700 in May 2010. However, the lowest 10 percent of immunologists earned less than $41,560, and the top 10 percent earned more than $142,800, (Bureau of Labor Statistics, 2013). The practice of immunology itself is not specified by the U.S. Department of Labor but it belongs to the practice of life science in general.[41]

Read the original:
Immunology - Wikipedia

Archive of "Immunology".

Vols. 147 to 149; 2016 Vols. 144 to 146; 2015 Vols. 141 to 143; 2014 Vols. 138 to 140; 2013 Vols. 135 to 137; 2012 Vols. 132 to 135; 2011 Vols. 129 to 131; 2010 Vols. 126 to 128; 2009 Vols. 123 to 125; 2008 Vols. 120 to 122; 2007 Vols. 117 to 119; 2006 Vols. 114 to 116; 2005 Vols. 111 to 113; 2004 Vols. 108 to 110; 2003 Vols. 105 to 107; 2002 Vols. 102 to 104; 2001 Vols. 99 to 101; 2000 Vols. 96 to 98; 1999 Vols. 93 to 95; 1998 Vols. 90 to 92; 1997 Vols. 87 to 89; 1996 Vols. 84 to 86; 1995 Vols. 81 to 83; 1994 Vols. 78 to 80; 1993 Vols. 75 to 77; 1992 Vols. 72 to 74; 1991 Vols. 69 to 71; 1990 Vols. 66 to 68; 1989 Vols. 63 to 65; 1988 Vols. 60 to 62; 1987 Vols. 57 to 59; 1986 Vols. 54 to 56; 1985 Vols. 51 to 53; 1984 Vols. 48 to 50; 1983 Vols. 45 to 47; 1982 Vols. 42 to 44; 1981 Vols. 39 to 41; 1980 Vols. 36 to 38; 1979 Vols. 34 to 35; 1978 Vols. 32 to 33; 1977 Vols. 30 to 31; 1976 Vols. 28 to 29; 1975 Vols. 26 to 27; 1974 Vols. 24 to 25; 1973 Vols. 22 to 23; 1972 Vols. 20 to 21; 1971 Vols. 18 to 19; 1970 Vols. 16 to 17; 1969 Vols. 14 to 15; 1968 Vols. 12 to 13; 1967 Vols. 10 to 11; 1966 Vols. 8 to 9; 1965 Vol. 7 1964 Vol. 6 1963 Vol. 5 1962 Vol. 4 1961 Vol. 3 1960 Vol. 2 1959 Vol. 1 1958

See more here:
Archive of "Immunology".

Anatomy – Wikipedia

Anatomy is the branch of biology concerned with the study of the structure of organisms and their parts.[1] Anatomy is inherently tied to embryology, comparative anatomy, evolutionary biology, and phylogeny,[2] as these are the processes by which anatomy is generated over immediate (embryology) and long (evolution) timescales. Human anatomy is one of the basic essential sciences of medicine.[3]

The discipline of anatomy is divided into macroscopic and microscopic anatomy. Macroscopic anatomy, or gross anatomy, is the examination of an animal's body parts using unaided eyesight. Gross anatomy also includes the branch of superficial anatomy. Microscopic anatomy involves the use of optical instruments in the study of the tissues of various structures, known as histology, and also in the study of cells.

The history of anatomy is characterized by a progressive understanding of the functions of the organs and structures of the human body. Methods have also improved dramatically, advancing from the examination of animals by dissection of carcasses and cadavers (corpses) to 20th century medical imaging techniques including X-ray, ultrasound, and magnetic resonance imaging.

Anatomy and physiology, which study (respectively) the structure and function of organisms and their parts, make a natural pair of related disciplines, and they are often studied together.

Derived from the Greek anatemn "I cut up, cut open" from ana "up", and temn "I cut",[4] anatomy is the scientific study of the structure of organisms including their systems, organs and tissues. It includes the appearance and position of the various parts, the materials from which they are composed, their locations and their relationships with other parts. Anatomy is quite distinct from physiology and biochemistry, which deal respectively with the functions of those parts and the chemical processes involved. For example, an anatomist is concerned with the shape, size, position, structure, blood supply and innervation of an organ such as the liver; while a physiologist is interested in the production of bile, the role of the liver in nutrition and the regulation of bodily functions.[5]

The discipline of anatomy can be subdivided into a number of branches including gross or macroscopic anatomy and microscopic anatomy.[6]Gross anatomy is the study of structures large enough to be seen with the naked eye, and also includes superficial anatomy or surface anatomy, the study by sight of the external body features. Microscopic anatomy is the study of structures on a microscopic scale, including histology (the study of tissues), and embryology (the study of an organism in its immature condition).[2]

Anatomy can be studied using both invasive and non-invasive methods with the goal of obtaining information about the structure and organization of organs and systems.[2] Methods used include dissection, in which a body is opened and its organs studied, and endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the body wall and used to explore the internal organs and other structures. Angiography using X-rays or magnetic resonance angiography are methods to visualize blood vessels.[7][8][9][10]

The term "anatomy" is commonly taken to refer to human anatomy. However, substantially the same structures and tissues are found throughout the rest of the animal kingdom and the term also includes the anatomy of other animals. The term zootomy is also sometimes used to specifically refer to animals. The structure and tissues of plants are of a dissimilar nature and they are studied in plant anatomy.[5]

The kingdom Animalia or metazoa, contains multicellular organisms that are heterotrophic and motile (although some have secondarily adopted a sessile lifestyle). Most animals have bodies differentiated into separate tissues and these animals are also known as eumetazoans. They have an internal digestive chamber, with one or two openings; the gametes are produced in multicellular sex organs, and the zygotes include a blastula stage in their embryonic development. Metazoans do not include the sponges, which have undifferentiated cells.[11]

Unlike plant cells, animal cells have neither a cell wall nor chloroplasts. Vacuoles, when present, are more in number and much smaller than those in the plant cell. The body tissues are composed of numerous types of cell, including those found in muscles, nerves and skin. Each typically has a cell membrane formed of phospholipids, cytoplasm and a nucleus. All of the different cells of an animal are derived from the embryonic germ layers. Those simpler invertebrates which are formed from two germ layers of ectoderm and endoderm are called diploblastic and the more developed animals whose structures and organs are formed from three germ layers are called triploblastic.[12] All of a triploblastic animal's tissues and organs are derived from the three germ layers of the embryo, the ectoderm, mesoderm and endoderm.

Animal tissues can be grouped into four basic types: connective, epithelial, muscle and nervous tissue.

Connective tissues are fibrous and made up of cells scattered among inorganic material called the extracellular matrix. Connective tissue gives shape to organs and holds them in place. The main types are loose connective tissue, adipose tissue, fibrous connective tissue, cartilage and bone. The extracellular matrix contains proteins, the chief and most abundant of which is collagen. Collagen plays a major part in organizing and maintaining tissues. The matrix can be modified to form a skeleton to support or protect the body. An exoskeleton is a thickened, rigid cuticle which is stiffened by mineralization, as in crustaceans or by the cross-linking of its proteins as in insects. An endoskeleton is internal and present in all developed animals, as well as in many of those less developed.[12]

Epithelial tissue is composed of closely packed cells, bound to each other by cell adhesion molecules, with little intercellular space. Epithelial cells can be squamous (flat), cuboidal or columnar and rest on a basal lamina, the upper layer of the basement membrane,[13] the lower layer is the reticular lamina lying next to the connective tissue in the extracellular matrix secreted by the epithelial cells.[14] There are many different types of epithelium, modified to suit a particular function. In the respiratory tract there is a type of ciliated epithelial lining; in the small intestine there are microvilli on the epithelial lining and in the large intestine there are intestinal villi. Skin consists of an outer layer of keratinized stratified squamous epithelium that covers the exterior of the vertebrate body. Keratinocytes make up to 95% of the cells in the skin.[15] The epithelial cells on the external surface of the body typically secrete an extracellular matrix in the form of a cuticle. In simple animals this may just be a coat of glycoproteins.[12] In more advanced animals, many glands are formed of epithelial cells.[16]

Muscle cells (myocytes) form the active contractile tissue of the body. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle is formed of contractile filaments and is separated into three main types; smooth muscle, skeletal muscle and cardiac muscle. Smooth muscle has no striations when examined microscopically. It contracts slowly but maintains contractibility over a wide range of stretch lengths. It is found in such organs as sea anemone tentacles and the body wall of sea cucumbers. Skeletal muscle contracts rapidly but has a limited range of extension. It is found in the movement of appendages and jaws. Obliquely striated muscle is intermediate between the other two. The filaments are staggered and this is the type of muscle found in earthworms that can extend slowly or make rapid contractions.[17] In higher animals striated muscles occur in bundles attached to bone to provide movement and are often arranged in antagonistic sets. Smooth muscle is found in the walls of the uterus, bladder, intestines, stomach, oesophagus, respiratory airways, and blood vessels. Cardiac muscle is found only in the heart, allowing it to contract and pump blood round the body.

Nervous tissue is composed of many nerve cells known as neurons which transmit information. In some slow-moving radially symmetrical marine animals such as ctenophores and cnidarians (including sea anemones and jellyfish), the nerves form a nerve net, but in most animals they are organized longitudinally into bundles. In simple animals, receptor neurons in the body wall cause a local reaction to a stimulus. In more complex animals, specialized receptor cells such as chemoreceptors and photoreceptors are found in groups and send messages along neural networks to other parts of the organism. Neurons can be connected together in ganglia.[18] In higher animals, specialized receptors are the basis of sense organs and there is a central nervous system (brain and spinal cord) and a peripheral nervous system. The latter consists of sensory nerves that transmit information from sense organs and motor nerves that influence target organs.[19][20] The peripheral nervous system is divided into the somatic nervous system which conveys sensation and controls voluntary muscle, and the autonomic nervous system which involuntarily controls smooth muscle, certain glands and internal organs, including the stomach.[21]

All vertebrates have a similar basic body plan and at some point in their lives, (mostly in the embryonic stage), share the major chordate characteristics; a stiffening rod, the notochord; a dorsal hollow tube of nervous material, the neural tube; pharyngeal arches; and a tail posterior to the anus. The spinal cord is protected by the vertebral column and is above the notochord and the gastrointestinal tract is below it.[22] Nervous tissue is derived from the ectoderm, connective tissues are derived from mesoderm, and gut is derived from the endoderm. At the posterior end is a tail which continues the spinal cord and vertebrae but not the gut. The mouth is found at the anterior end of the animal, and the anus at the base of the tail.[23] The defining characteristic of a vertebrate is the vertebral column, formed in the development of the segmented series of vertebrae. In most vertebrates the notochord becomes the nucleus pulposus of the intervertebral discs. However, a few vertebrates, such as the sturgeon and the coelacanth retain the notochord into adulthood.[24]Jawed vertebrates are typified by paired appendages, fins or legs, which may be secondarily lost. The limbs of vertebrates are considered to be homologous because the same underlying skeletal structure was inherited from their last common ancestor. This is one of the arguments put forward by Charles Darwin to support his theory of evolution.[25]

The body of a fish is divided into a head, trunk and tail, although the divisions between the three are not always externally visible. The skeleton, which forms the support structure inside the fish, is either made of cartilage, in cartilaginous fish, or bone in bony fish. The main skeletal element is the vertebral column, composed of articulating vertebrae which are lightweight yet strong. The ribs attach to the spine and there are no limbs or limb girdles. The main external features of the fish, the fins, are composed of either bony or soft spines called rays, which with the exception of the caudal fins, have no direct connection with the spine. They are supported by the muscles which compose the main part of the trunk.[26] The heart has two chambers and pumps the blood through the respiratory surfaces of the gills and on round the body in a single circulatory loop.[27] The eyes are adapted for seeing underwater and have only local vision. There is an inner ear but no external or middle ear. Low frequency vibrations are detected by the lateral line system of sense organs that run along the length of the sides of fish, and these respond to nearby movements and to changes in water pressure.[26]

Sharks and rays are basal fish with numerous primitive anatomical features similar to those of ancient fish, including skeletons composed of cartilage. Their bodies tend to be dorso-ventrally flattened, they usually have five pairs of gill slits and a large mouth set on the underside of the head. The dermis is covered with separate dermal placoid scales. They have a cloaca into which the urinary and genital passages open, but not a swim bladder. Cartilaginous fish produce a small number of large, yolky eggs. Some species are ovoviviparous and the young develop internally but others are oviparous and the larvae develop externally in egg cases.[28]

The bony fish lineage shows more derived anatomical traits, often with major evolutionary changes from the features of ancient fish. They have a bony skeleton, are generally laterally flattened, have five pairs of gills protected by an operculum, and a mouth at or near the tip of the snout. The dermis is covered with overlapping scales. Bony fish have a swim bladder which helps them maintain a constant depth in the water column, but not a cloaca. They mostly spawn a large number of small eggs with little yolk which they broadcast into the water column.[28]

Amphibians are a class of animals comprising frogs, salamanders and caecilians. They are tetrapods, but the caecilians and a few species of salamander have either no limbs or their limbs are much reduced in size. Their main bones are hollow and lightweight and are fully ossified and the vertebrae interlock with each other and have articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, but contains many mucous glands and in some species, poison glands. The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Amphibians breathe by means of buccal pumping, a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat.[29] They supplement this with gas exchange through the skin which needs to be kept moist.[30]

In frogs the pelvic girdle is robust and the hind legs are much longer and stronger than the forelimbs. The feet have four or five digits and the toes are often webbed for swimming or have suction pads for climbing. Frogs have large eyes and no tail. Salamanders resemble lizards in appearance; their short legs project sideways, the belly is close to or in contact with the ground and they have a long tail. Caecilians superficially resemble earthworms and are limbless. They burrow by means of zones of muscle contractions which move along the body and they swim by undulating their body from side to side.[31]

Reptiles are a class of animals comprising turtles, tuataras, lizards, snakes and crocodiles. They are tetrapods, but the snakes and a few species of lizard either have no limbs or their limbs are much reduced in size. Their bones are better ossified and their skeletons stronger than those of amphibians. The teeth are conical and mostly uniform in size. The surface cells of the epidermis are modified into horny scales which create a waterproof layer. Reptiles are unable to use their skin for respiration as do amphibians and have a more efficient respiratory system drawing air into their lungs by expanding their chest walls. The heart resembles that of the amphibian but there is a septum which more completely separates the oxygenated and deoxygenated bloodstreams. The reproductive system is designed for internal fertilization, with a copulatory organ present in most species. The eggs are surrounded by amniotic membranes which prevents them from drying out and are laid on land, or develop internally in some species. The bladder is small as nitrogenous waste is excreted as uric acid.[32]

Turtles are notable for their protective shells. They have an inflexible trunk encased in a horny carapace above and a plastron below. These are formed from bony plates embedded in the dermis which are overlain by horny ones and are partially fused with the ribs and spine. The neck is long and flexible and the head and the legs can be drawn back inside the shell. Turtles are vegetarians and the typical reptile teeth have been replaced by sharp, horny plates. In aquatic species, the front legs are modified into flippers.[33]

Tuataras superficially resemble lizards but the lineages diverged in the Triassic period. There is one living species, Sphenodon punctatus. The skull has two openings (fenestrae) on either side and the jaw is rigidly attached to the skull. There is one row of teeth in the lower jaw and this fits between the two rows in the upper jaw when the animal chews. The teeth are merely projections of bony material from the jaw and eventually wear down. The brain and heart are more primitive than those of other reptiles, and the lungs have a single chamber and lack bronchi. The tuatara has a well-developed parietal eye on its forehead.[33]

Lizards have skulls with only one fenestra on each side, the lower bar of bone below the second fenestra having been lost. This results in the jaws being less rigidly attached which allows the mouth to open wider. Lizards are mostly quadrupeds, with the trunk held off the ground by short, sideways-facing legs, but a few species have no limbs and resemble snakes. Lizards have moveable eyelids, eardrums are present and some species have a central parietal eye.[33]

Snakes are closely related to lizards, having branched off from a common ancestral lineage during the Cretaceous period, and they share many of the same features. The skeleton consists of a skull, a hyoid bone, spine and ribs though a few species retain a vestige of the pelvis and rear limbs in the form of pelvic spurs. The bar under the second fenestra has also been lost and the jaws have extreme flexibility allowing the snake to swallow its prey whole. Snakes lack moveable eyelids, the eyes being covered by transparent "spectacle" scales. They do not have eardrums but can detect ground vibrations through the bones of their skull. Their forked tongues are used as organs of taste and smell and some species have sensory pits on their heads enabling them to locate warm-blooded prey.[34]

Crocodilians are large, low-slung aquatic reptiles with long snouts and large numbers of teeth. The head and trunk are dorso-ventrally flattened and the tail is laterally compressed. It undulates from side to side to force the animal through the water when swimming. The tough keratinized scales provide body armour and some are fused to the skull. The nostrils, eyes and ears are elevated above the top of the flat head enabling them to remain above the surface of the water when the animal is floating. Valves seal the nostrils and ears when it is submerged. Unlike other reptiles, crocodilians have hearts with four chambers allowing complete separation of oxygenated and deoxygenated blood.[35]

Birds are tetrapods but though their hind limbs are used for walking or hopping, their front limbs are wings covered with feathers and adapted for flight. Birds are endothermic, have a high metabolic rate, a light skeletal system and powerful muscles. The long bones are thin, hollow and very light. Air sac extensions from the lungs occupy the centre of some bones. The sternum is wide and usually has a keel and the caudal vertebrae are fused. There are no teeth and the narrow jaws are adapted into a horn-covered beak. The eyes are relatively large, particularly in nocturnal species such as owls. They face forwards in predators and sideways in ducks.[36]

The feathers are outgrowths of the epidermis and are found in localized bands from where they fan out over the skin. Large flight feathers are found on the wings and tail, contour feathers cover the bird's surface and fine down occurs on young birds and under the contour feathers of water birds. The only cutaneous gland is the single uropygial gland near the base of the tail. This produces an oily secretion that waterproofs the feathers when the bird preens. There are scales on the legs, feet and claws on the tips of the toes.[36]

Mammals are a diverse class of animals, mostly terrestrial but some are aquatic and others have evolved flapping or gliding flight. They mostly have four limbs but some aquatic mammals have no limbs or limbs modified into fins and the forelimbs of bats are modified into wings. The legs of most mammals are situated below the trunk, which is held well clear of the ground. The bones of mammals are well ossified and their teeth, which are usually differentiated, are coated in a layer of prismatic enamel. The teeth are shed once (milk teeth) during the animal's lifetime or not at all, as is the case in cetaceans. Mammals have three bones in the middle ear and a cochlea in the inner ear. They are clothed in hair and their skin contains glands which secrete sweat. Some of these glands are specialized as mammary glands, producing milk to feed the young. Mammals breathe with lungs and have a muscular diaphragm separating the thorax from the abdomen which helps them draw air into the lungs. The mammalian heart has four chambers and oxygenated and deoxygenated blood are kept entirely separate. Nitrogenous waste is excreted primarily as urea.[37]

Mammals are amniotes, and most are viviparous, giving birth to live young. The exception to this are the egg-laying monotremes, the platypus and the echidnas of Australia. Most other mammals have a placenta through which the developing foetus obtains nourishment, but in marsupials, the foetal stage is very short and the immature young is born and finds its way to its mother's pouch where it latches on to a nipple and completes its development.[37]

Humans have the overall body plan of a mammal. Humans have a head, neck, trunk (which includes the thorax and abdomen), two arms and hands and two legs and feet.

Generally, students of certain biological sciences, paramedics, prosthetists and orthotists, physiotherapists, occupational therapists, nurses, and medical students learn gross anatomy and microscopic anatomy from anatomical models, skeletons, textbooks, diagrams, photographs, lectures and tutorials, and in addition, medical students generally also learn gross anatomy through practical experience of dissection and inspection of cadavers. The study of microscopic anatomy (or histology) can be aided by practical experience examining histological preparations (or slides) under a microscope. [39]

Human anatomy, physiology and biochemistry are complementary basic medical sciences, which are generally taught to medical students in their first year at medical school. Human anatomy can be taught regionally or systemically; that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such as the nervous or respiratory systems.[2] The major anatomy textbook, Gray's Anatomy, has been reorganized from a systems format to a regional format, in line with modern teaching methods.[40][41] A thorough working knowledge of anatomy is required by physicians, especially surgeons and doctors working in some diagnostic specialties, such as histopathology and radiology. [42]

Academic anatomists are usually employed by universities, medical schools or teaching hospitals. They are often involved in teaching anatomy, and research into certain systems, organs, tissues or cells.[42]

Invertebrates constitute a vast array of living organisms ranging from the simplest unicellular eukaryotes such as Paramecium to such complex multicellular animals as the octopus, lobster and dragonfly. They constitute about 95% of the animal species. By definition, none of these creatures has a backbone. The cells of single-cell protozoans have the same basic structure as those of multicellular animals but some parts are specialized into the equivalent of tissues and organs. Locomotion is often provided by cilia or flagella or may proceed via the advance of pseudopodia, food may be gathered by phagocytosis, energy needs may be supplied by photosynthesis and the cell may be supported by an endoskeleton or an exoskeleton. Some protozoans can form multicellular colonies.[43]

Metazoans are multicellular organism, different groups of cells of which have separate functions. The most basic types of metazoan tissues are epithelium and connective tissue, both of which are present in nearly all invertebrates. The outer surface of the epidermis is normally formed of epithelial cells and secretes an extracellular matrix which provides support to the organism. An endoskeleton derived from the mesoderm is present in echinoderms, sponges and some cephalopods. Exoskeletons are derived from the epidermis and is composed of chitin in arthropods (insects, spiders, ticks, shrimps, crabs, lobsters). Calcium carbonate constitutes the shells of molluscs, brachiopods and some tube-building polychaete worms and silica forms the exoskeleton of the microscopic diatoms and radiolaria.[44] Other invertebrates may have no rigid structures but the epidermis may secrete a variety of surface coatings such as the pinacoderm of sponges, the gelatinous cuticle of cnidarians (polyps, sea anemones, jellyfish) and the collagenous cuticle of annelids. The outer epithelial layer may include cells of several types including sensory cells, gland cells and stinging cells. There may also be protrusions such as microvilli, cilia, bristles, spines and tubercles.[45]

Marcello Malpighi, the father of microscopical anatomy, discovered that plants had tubules similar to those he saw in insects like the silk worm. He observed that when a ring-like portion of bark was removed on a trunk a swelling occurred in the tissues above the ring, and he unmistakably interpreted this as growth stimulated by food coming down from the leaves, and being captured above the ring.[46]

Arthropods comprise the largest phylum in the animal kingdom with over a million known invertebrate species.[47]

Insects possess segmented bodies supported by a hard-jointed outer covering, the exoskeleton, made mostly of chitin. The segments of the body are organized into three distinct parts, a head, a thorax and an abdomen.[48] The head typically bears a pair of sensory antennae, a pair of compound eyes, one to three simple eyes (ocelli) and three sets of modified appendages that form the mouthparts. The thorax has three pairs of segmented legs, one pair each for the three segments that compose the thorax and one or two pairs of wings. The abdomen is composed of eleven segments, some of which may be fused and houses the digestive, respiratory, excretory and reproductive systems.[49] There is considerable variation between species and many adaptations to the body parts, especially wings, legs, antennae and mouthparts.[50]

Spiders a class of arachnids have four pairs of legs; a body of two segmentsa cephalothorax and an abdomen. Spiders have no wings and no antennae. They have mouthparts called chelicerae which are often connected to venom glands as most spiders are venomous. They have a second pair of appendages called pedipalps attached to the cephalothorax. These have similar segmentation to the legs and function as taste and smell organs. At the end of each male pedipalp is a spoon-shaped cymbium that acts to support the copulatory organ.

Ancient Greek anatomy and physiology underwent great changes and advances throughout the early medieval world. Over time, this medical practice expanded by a continually developing understanding of the functions of organs and structures in the body. Phenomenal anatomical observations of the human body were made, which have contributed towards the understanding of the brain, eye, liver, reproductive organs and the nervous system.

The city of Alexandria was the stepping-stone for Greek anatomy and physiology. Alexandria not only housed the biggest library for medical records and books of the liberal arts in the world during the time of the Greeks, but was also home to many medical practitioners and philosophers. Great patronage of the arts and sciences from the Ptolemy rulers helped raise Alexandria up, further rivalling the cultural and scientific achievements of other Greek states.[52]

Some of the most striking advances in early anatomy and physiology took place in Hellenistic Alexandria.[52] Two of the most famous Greek anatomists and physiologists of the third century were Herophilus and Erasistratus. These two physicians helped pioneer human dissection for medical research. They also conducted vivisections on the cadavers of condemned criminals, which was considered taboo until the Renaissance Herophilus was recognized as the first person to perform systematic dissections.[53] Herophilus became known for his anatomical works making impressing contributions to many branches of anatomy and many other aspects of medicine.[54] Some of the works included classifying the system of the pulse, the discovery that human arteries had thicker walls then veins, and that the atria were parts of the heart. Herophiluss knowledge of the human body has provided vital input towards understanding the brain, eye, liver, reproductive organs and nervous system, and characterizing the course of disease.[55] Erasistratus accurately described the structure of the brain, including the cavities and membranes, and made a distinction between its cerebrum and cerebellum [56] During his study in Alexandria, Erasistratus was particularly concerned with studies of the circulatory and nervous systems. He was able to distinguish the sensory and the motor nerves in the human body and believed that air entered the lungs and heart, which was then carried throughout the body. His distinction between the arteries and veins the arteries carrying the air through the body, while the veins carried the blood from the heart was a great anatomical discovery. Erasistratus was also responsible for naming and describing the function of the epiglottis and the valves of the heart, including the tricuspid.[57] During the third century, Greek physicians were able to differentiate nerves from blood vessels and tendons [58] and to realize that the nerves convey neural impulses.[52] It was Herophilus who made the point that damage to motor nerves induced paralysis.[59] Herophilus named the meninges and ventricles in the brain, appreciated the division between cerebellum and cerebrum and recognized that the brain was the "seat of intellect" and not a "cooling chamber" as propounded by Aristotle [60] Herophilus is also credited with describing the optic, oculomotor, motor division of the trigeminal, facial, vestibulocochlear and hypoglossal nerves [61]

Great feats were made during the third century in both the digestive and reproductive systems. Herophilus was able to discover and describe not only the salivary glands, but the small intestine and liver.[61] He showed that the uterus is a hollow organ and described the ovaries and uterine tubes. He recognized that spermatozoa were produced by the testes and was the first to identify the prostate gland.[61]

In 1600 BCE, the Edwin Smith Papyrus, an Ancient Egyptian medical text, described the heart, its vessels, liver, spleen, kidneys, hypothalamus, uterus and bladder, and showed the blood vessels diverging from the heart. The Ebers Papyrus (c. 1550 BCE) features a "treatise on the heart", with vessels carrying all the body's fluids to or from every member of the body.[62]

The anatomy of the muscles and skeleton is described in the Hippocratic Corpus, an Ancient Greek medical work written by unknown authors.[63]Aristotle described vertebrate anatomy based on animal dissection. Praxagoras identified the difference between arteries and veins. Also in the 4th century BCE, Herophilos and Erasistratus produced more accurate anatomical descriptions based on vivisection of criminals in Alexandria during the Ptolemaic dynasty.[64][65]

In the 2nd century, Galen of Pergamum, an anatomist, clinician, writer and philosopher,[66] wrote the final and highly influential anatomy treatise of ancient times.[67] He compiled existing knowledge and studied anatomy through dissection of animals.[66] He was one of the first experimental physiologists through his vivisection experiments on animals.[68] Galen's drawings, based mostly on dog anatomy, became effectively the only anatomical textbook for the next thousand years.[69] His work was known to Renaissance doctors only through Islamic Golden Age medicine until it was translated from the Greek some time in the 15th century.[69]

Anatomy developed little from classical times until the sixteenth century; as the historian Marie Boas writes, "Progress in anatomy before the sixteenth century is as mysteriously slow as its development after 1500 is startlingly rapid".[69]:120121 Between 1275 and 1326, the anatomists Mondino de Luzzi, Alessandro Achillini and Antonio Benivieni at Bologna carried out the first systematic human dissections since ancient times.[70][71][72] Mondino's Anatomy of 1316 was the first textbook in the medieval rediscovery of human anatomy. It describes the body in the order followed in Mondino's dissections, starting with the abdomen, then the thorax, then the head and limbs. It was the standard anatomy textbook for the next century.[69]

Leonardo da Vinci (14521519) was trained in anatomy by Andrea del Verrocchio.[69] He made use of his anatomical knowledge in his artwork, making many sketches of skeletal structures, muscles and organs of humans and other vertebrates that he dissected.[69][73]

Andreas Vesalius (15141564) (Latinized from Andries van Wezel), professor of anatomy at the University of Padua, is considered the founder of modern human anatomy.[74] Originally from Brabant, Vesalius published the influential book De humani corporis fabrica ("the structure of the human body"), a large format book in seven volumes, in 1543.[75] The accurate and intricately detailed illustrations, often in allegorical poses against Italianate landscapes, are thought to have been made by the artist Jan van Calcar, a pupil of Titian.[76]

In England, anatomy was the subject of the first public lectures given in any science; these were given by the Company of Barbers and Surgeons in the 16th century, joined in 1583 by the Lumleian lectures in surgery at the Royal College of Physicians.[77]

In the United States, medical schools began to be set up towards the end of the 18th century. Classes in anatomy needed a continual stream of cadavers for dissection and these were difficult to obtain. Philadelphia, Baltimore and New York were all renowned for body snatching activity as criminals raided graveyards at night, removing newly buried corpses from their coffins.[78] A similar problem existed in Britain where demand for bodies became so great that grave-raiding and even anatomy murder were practised to obtain cadavers.[79] Some graveyards were in consequence protected with watchtowers. The practice was halted in Britain by the Anatomy Act of 1832,[80][81] while in the United States, similar legislation was enacted after the physician William S. Forbes of Jefferson Medical College was found guilty in 1882 of "complicity with resurrectionists in the despoliation of graves in Lebanon Cemetery".[82]

The teaching of anatomy in Britain was transformed by Sir John Struthers, Regius Professor of Anatomy at the University of Aberdeen from 1863 to 1889. He was responsible for setting up the system of three years of "pre-clinical" academic teaching in the sciences underlying medicine, including especially anatomy. This system lasted until the reform of medical training in 1993 and 2003. As well as teaching, he collected many vertebrate skeletons for his museum of comparative anatomy, published over 70 research papers, and became famous for his public dissection of the Tay Whale.[83][84] From 1822 the Royal College of Surgeons regulated the teaching of anatomy in medical schools.[85] Medical museums provided examples in comparative anatomy, and were often used in teaching.[86]Ignaz Semmelweis investigated puerperal fever and he discovered how it was caused. He noticed that the frequently fatal fever occurred more often in mothers examined by medical students than by midwives. The students went from the dissecting room to the hospital ward and examined women in childbirth. Semmelweis showed that when the trainees washed their hands in chlorinated lime before each clinical examination, the incidence of puerperal fever among the mothers could be reduced dramatically.[87]

Before the era of modern medical procedures, the main means for studying the internal structure of the body were palpation and dissection. It was the advent of microscopy that opened up an understanding of the building blocks that constituted living tissues. Technical advances in the development of achromatic lenses increased the resolving power of the microscope and around 1839, Matthias Jakob Schleiden and Theodor Schwann identified that cells were the fundamental unit of organization of all living things. Study of small structures involved passing light through them and the microtome was invented to provide sufficiently thin slices of tissue to examine. Staining techniques using artificial dyes were established to help distinguish between different types of tissue. The fields of cytology and histology developed from here in the late 19th century.[88] The invention of the electron microscope brought a great advance in resolution power and allowed research into the ultrastructure of cells and the organelles and other structures within them. About the same time, in the 1950s, the use of X-ray diffraction for studying the crystal structures of proteins, nucleic acids and other biological molecules gave rise to a new field of molecular anatomy.[88]

Short wavelength electromagnetic radiation such as X-rays can be passed through the body and used in medical radiography to view interior structures that have different degrees of opaqueness. Nowadays, modern techniques such as magnetic resonance imaging, computed tomography, fluoroscopy and ultrasound imaging have enabled researchers and practitioners to examine organs, living or dead, in unprecedented detail. They are used for diagnostic and therapeutic purposes and provide information on the internal structures and organs of the body to a degree far beyond the imagination of earlier generations.[89]

Main article: Bibliography of anatomy

Go here to see the original:
Anatomy - Wikipedia

What is physiology? | Physiological Society

Physiology is the study of how molecules, cells and organs interact to form a whole being. The work of Physiological Society Members, advancing our knowledge of biological systems, is essential to the development of new treatments for disease.Since The Society's foundation in 1876, our membership has included more than 20 Nobel Prize winners from Ivan Pavlov to Andrew Huxley. The scientists who make up The Society have made many key discoveries, ranging from how our nervous system works,how our cells divide andthe way in which our reflexes alter our behaviour. These have advanced our knowledge of biological systems and helped in the treatment of diseases such as cancer, cystic fibrosis and heart disease.

As well as supporting those active in physiology research, we also work to inspire the next generations of physiologists; working with teachers, lecturers and students to help highlight physiology as a relevant, engaging career choice. The Society's presence at public events such as science fairs and media promotion of the research it publishes in its journals, also aim to raise the profile of physiology and highlight its relevance to everyday life.

Read more:
What is physiology? | Physiological Society

Physiology – Wikipedia

Physiology (; from Ancient Greek (physis), meaning "nature, origin", and - (-logia), meaning "study of"[1]) is the scientific study of the normal function in living systems.[2] A sub-discipline of biology, its focus is in how organisms, organ systems, organs, cells, and biomolecules carry out the chemical or physical functions that exist in a living system.[3] Given the size of the field, it is divided into, among others, animal physiology (including that of humans), plant physiology, cellular physiology, microbial physiology (microbial metabolism), bacterial physiology, and viral physiology.[3] The Nobel Prize in Physiology or Medicine is awarded to those who make significant achievements in this discipline by the Royal Swedish Academy of Sciences. In medicine, a physiologic state is one occurring from normal body function, rather than pathologically, which is centered on the abnormalities that occur in animal diseases, including humans.[4]

Physiological studies date back to ancient civilizations of India[5][6] and Egypt alongside anatomical studies, but did not utilize dissection or vivisection.[7]

The study of human physiology as a medical field dates back to at least 420BC to the time of Hippocrates, also known as the "father of medicine."[8] Hippocrates incorporated his belief system called the theory of humours, which consisted of four basic substance: earth, water, air and fire. Each substance is known for having a corresponding humour: black bile, phlegm, blood and yellow bile, respectively. Hippocrates also noted some emotional connections to the four humours, which Claudis Galenus would later expand on. The critical thinking of Aristotle and his emphasis on the relationship between structure and function marked the beginning of physiology in Ancient Greece. Like Hippocrates, Aristotle took to the humoral theory of disease, which also consisted of four primary qualities in life: hot, cold, wet and dry.[9] Claudius Galenus (c. ~130200AD), known as Galen of Pergamum, was the first to use experiments to probe the functions of the body. Unlike Hippocrates though, Galen argued that humoral imbalances can be located in specific organs, including the entire body.[10] His modification of this theory better equipped doctors to make more precise diagnoses. Galen also played off of Hippocrates idea that emotions were also tied to the humours, and added the notion of temperaments: sanguine corresponds with blood; phlegmatic is tied to phlegm; yellow bile is connected to choleric; and black bile corresponds with melancholy. Galen also saw the human body consisting of three connected systems: the brain and nerves, which are responsible for thoughts and sensations; the heart and arteries, which give life; and the liver and veins, which can be attributed to nutrition and growth.[10] Galen was also the founder of experimental physiology.[11] And for the next 1,400 years, Galenic physiology was a powerful and influential tool in medicine.[10]

Jean Fernel (14971558), a French physician, introduced the term "physiology".[12]

In 1858, Joseph Lister studied the cause of blood coagulation and inflammation that resulted after previous injuries and surgical wounds. He later discovered and implemented antiseptics in the operating room, and as a result decreases death rate from surgery by a substantial amount.[4][13]

In 1891, Ivan Pavlov performed research on "conditional reflexes" that involved dogs' saliva production in response to a plethora of sounds and visual stimuli.[13]

In the 19th century, physiological knowledge began to accumulate at a rapid rate, in particular with the 1838 appearance of the Cell theory of Matthias Schleiden and Theodor Schwann. It radically stated that organisms are made up of units called cells. Claude Bernard's (18131878) further discoveries ultimately led to his concept of milieu interieur (internal environment), which would later be taken up and championed as "homeostasis" by American physiologist Walter B. Cannon in 1929. By homeostasis, Cannon meant "the maintenance of steady states in the body and the physiological processes through which they are regulated."[14] In other words, the body's ability to regulate its internal environment. It should be noted that, William Beaumont was the first American to utilize the practical application of physiology.

The Physiological Society was founded in London in 1876 as a dining club The American Physiological Society (APS) is a nonprofit devoted to fostering education, scientific research, and dissemination of information in the physiological sciences. The Society was founded in 1887 with 28 members.

In the 20th century, biologists became interested in how organisms other than human beings function, eventually spawning the fields of comparative physiology and ecophysiology.[15] Major figures in these fields include Knut Schmidt-Nielsen and George Bartholomew. Most recently, evolutionary physiology has become a distinct subdiscipline.[16]

In 1920, August Krogh won the Nobel Prize for discovering how, in capillaries, blood flow is regulated.[13]

In 1954, Andrew Huxley and Hugh Huxley, alongside their research team, discovered the sliding filaments in skeletal muscle, known today as the sliding filament theory.[13]

Initially, women were largely excluded from official involvement in any physiological society. The American Physiological Society, for example, was founded in 1887 and included only men in its ranks.[citation needed] In 1902, the American Physiological Society elected Ida Hyde as the first female member of the society.[citation needed] Hyde, a representative of the American Association of University Women and a global advocate for gender equality in education,[17] attempted to promote gender equality in every aspect of science and medicine.

Soon thereafter, in 1913, J.S. Haldane proposed that women be allowed to formally join The Physiological Society, which had been founded in 1876.[citation needed] On 3 July 1915, six women were officially admitted: Florence Buchanan, Winifred Cullis, Ruth C. Skelton, Sarah C. M. Sowton, Constance Leetham Terry, and Enid M. Tribe.[18] The centenary of the election of women was celebrated in 2015 with the publication of a book "Women physiologists: centenary celebrations and beyond for The Physiological Society ISBN 978-0-9933410-0-7.

Prominent women physiologists include:

There are many ways to categorize the subdiscplines of physiology:[27]

Human physiology seeks to understand the mechanisms that work to keep the human body alive and functioning,[3] through scientific enquiry into the nature of mechanical, physical, and biochemical functions of humans, their organs, and the cells of which they are composed. The principal level of focus of physiology is at the level of organs and systems within systems. The endocrine and nervous systems play major roles in the reception and transmission of signals that integrate function in animals. Homeostasis is a major aspect with regard to such interactions within plants as well as animals. The biological basis of the study of physiology, integration refers to the overlap of many functions of the systems of the human body, as well as its accompanied form. It is achieved through communication that occurs in a variety of ways, both electrical and chemical.[citation needed]

Much of the foundation of knowledge in human physiology was provided by animal experimentation. Physiology is the study of function and is closely related to anatomy which is the study of form and structure. Due to the frequent connection between form and function, physiology and anatomy are intrinsically linked and are studied in tandem as part of a medical curriculum.[28]

Read the original here:
Physiology - Wikipedia

Embryology – Wikipedia

This article is about the development of embryos in animals. For the development of plant embryos, see Sporophyte.

Embryology (from Greek , embryon, "the unborn, embryo"; and -, -logia) is the branch of biology that studies the development of gametes (sex cells), fertilization, and development of embryos and fetuses. Additionally, embryology is the study of congenital disorders that occur before birth.[1]

After cleavage, the dividing cells, or morula, becomes a hollow ball, or blastula, which develops a hole or pore at one end.

In bilateral animals, the blastula develops in one of two ways that divides the whole animal kingdom into two halves (see: Embryological origins of the mouth and anus). If in the blastula the first pore (blastopore) becomes the mouth of the animal, it is a protostome; if the first pore becomes the anus then it is a deuterostome. The protostomes include most invertebrate animals, such as insects, worms and molluscs, while the deuterostomes include the vertebrates. In due course, the blastula changes into a more differentiated structure called the gastrula.

The gastrula with its blastopore soon develops three distinct layers of cells (the germ layers) from which all the bodily organs and tissues then develop:

Embryos in many species often appear similar to one another in early developmental stages. The reason for this similarity is because species have a shared evolutionary history. These similarities among species are called homologous structures, which are structures that have the same or similar function and mechanism, having evolved from a common ancestor.

Click here to read the main article on Drosophila embryogenesis

Drosophila melanogaster, a fruit fly, is a model organism in biology on which much research into embryology has been done (see figure 1.1.1A and figure 1.1.1B).[2] Before fertilization, the female gamete produces an abundance of mRNA - transcribed from the genes that encode bicoid protein and nanos protein.[3][4] These mRNA molecules are stored to be used later in what will become a developing embryo. The male and female Drosophila gametes exhibit anisogamy (differences in morphology and sub-cellular biochemistry). The female gamete is larger than the male gamete because it harbors more cytoplasm and, within the cytoplasm, the female gamete contains an abundance of the mRNA previously mentioned.[5][6] At fertilization, the male and female gametes fuse (plasmogamy) and then the nucleus of the male gamete fuses with the nucleus of the female gamete (karyogamy). Note that before the gametes' nuclei fuse, they are known as pronuclei.[7] A series of nuclear divisions will occur without cytokinesis (division of the cell) in the zygote to form a multi-nucleated cell (a cell containing multiple nuclei) known as a syncytium.[8][9] All the nuclei in the syncytium are identical, just as all the nuclei in every somatic cell of any multicellular organism are identical in terms of the DNA sequence of the genome.[10] Before the nuclei can differentiate in transcriptional activity, the embryo (syncytium) must be divided into segments. In each segment, a unique set of regulatory proteins will cause specific genes in the nuclei to be transcribed. The resulting combination of proteins will transform clusters of cells into early embryo tissues that will each develop into multiple fetal and adult tissues later in development (note: this happens after each nucleus becomes wrapped with its own cell membrane).

Outlined below is the process that leads to cell and tissue differentiation.

Maternal-effect genes - subject to Maternal (cytoplasmic) inheritance.

Zygotic-effect genes - subject to Mendelian (classical) inheritance.

Humans are bilaterals and deuterostomes.

In humans, the term embryo refers to the ball of dividing cells from the moment the zygote implants itself in the uterus wall until the end of the eighth week after conception. Beyond the eighth week after conception (tenth week of pregnancy), the developing human is then called a fetus.

As recently as the 18th century, the prevailing notion in western human embryology was preformation: the idea that semen contains an embryo a preformed, miniature infant, or homunculus that simply becomes larger during development. The competing explanation of embryonic development was epigenesis, originally proposed 2,000 years earlier by Aristotle. Much early embryology came from the work of the Italian anatomists Aldrovandi, Aranzio, Leonardo da Vinci, Marcello Malpighi, Gabriele Falloppio, Girolamo Cardano, Emilio Parisano, Fortunio Liceti, Stefano Lorenzini, Spallanzani, Enrico Sertoli, and Mauro Rusconi.[22] According to epigenesis, the form of an animal emerges gradually from a relatively formless egg. As microscopy improved during the 19th century, biologists could see that embryos took shape in a series of progressive steps, and epigenesis displaced preformation as the favoured explanation among embryologists.[23]

Karl Ernst von Baer and Heinz Christian Pander proposed the germ layer theory of development; von Baer discovered the mammalian ovum in 1827.[24][25][26] Modern embryological pioneers include Charles Darwin, Ernst Haeckel, J.B.S. Haldane, and Joseph Needham. Other important contributors include William Harvey, Kaspar Friedrich Wolff, Heinz Christian Pander, August Weismann, Gavin de Beer, Ernest Everett Just, and Edward B. Lewis.

After the 1950s, with the DNA helical structure being unravelled and the increasing knowledge in the field of molecular biology, developmental biology emerged as a field of study which attempts to correlate the genes with morphological change, and so tries to determine which genes are responsible for each morphological change that takes place in an embryo, and how these genes are regulated.

Many principles of embryology apply to invertebrates as well as to vertebrates.[27] Therefore, the study of invertebrate embryology has advanced the study of vertebrate embryology. However, there are many differences as well. For example, numerous invertebrate species release a larva before development is complete; at the end of the larval period, an animal for the first time comes to resemble an adult similar to its parent or parents. Although invertebrate embryology is similar in some ways for different invertebrate animals, there are also countless variations. For instance, while spiders proceed directly from egg to adult form, many insects develop through at least one larval stage.

Currently, embryology has become an important research area for studying the genetic control of the development process (e.g. morphogens), its link to cell signalling, its importance for the study of certain diseases and mutations, and in links to stem cell research.

See the original post here:
Embryology - Wikipedia

Biochemistry – Wikipedia

Biochemistry, sometimes called biological chemistry, is the study of chemical processes within and relating to living organisms.[1] By controlling information flow through biochemical signaling and the flow of chemical energy through metabolism, biochemical processes give rise to the complexity of life. Over the last decades of the 20th century, biochemistry has become so successful at explaining living processes that now almost all areas of the life sciences from botany to medicine to genetics are engaged in biochemical research.[2] Today, the main focus of pure biochemistry is on understanding how biological molecules give rise to the processes that occur within living cells,[3] which in turn relates greatly to the study and understanding of tissues, organs, and whole organisms[4]that is, all of biology.

Biochemistry is closely related to molecular biology, the study of the molecular mechanisms by which genetic information encoded in DNA is able to result in the processes of life.[5] Depending on the exact definition of the terms used, molecular biology can be thought of as a branch of biochemistry, or biochemistry as a tool with which to investigate and study molecular biology.

Much of biochemistry deals with the structures, functions and interactions of biological macromolecules, such as proteins, nucleic acids, carbohydrates and lipids, which provide the structure of cells and perform many of the functions associated with life.[6] The chemistry of the cell also depends on the reactions of smaller molecules and ions. These can be inorganic, for example water and metal ions, or organic, for example the amino acids, which are used to synthesize proteins.[7] The mechanisms by which cells harness energy from their environment via chemical reactions are known as metabolism. The findings of biochemistry are applied primarily in medicine, nutrition, and agriculture. In medicine, biochemists investigate the causes and cures of diseases.[8] In nutrition, they study how to maintain health and study the effects of nutritional deficiencies.[9] In agriculture, biochemists investigate soil and fertilizers, and try to discover ways to improve crop cultivation, crop storage and pest control.

At its broadest definition, biochemistry can be seen as a study of the components and composition of living things and how they come together to become life, and the history of biochemistry may therefore go back as far as the ancient Greeks.[10] However, biochemistry as a specific scientific discipline has its beginning sometime in the 19th century, or a little earlier, depending on which aspect of biochemistry is being focused on. Some argued that the beginning of biochemistry may have been the discovery of the first enzyme, diastase (today called amylase), in 1833 by Anselme Payen,[11] while others considered Eduard Buchner's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts in 1897 to be the birth of biochemistry.[12][13] Some might also point as its beginning to the influential 1842 work by Justus von Liebig, Animal chemistry, or, Organic chemistry in its applications to physiology and pathology, which presented a chemical theory of metabolism,[10] or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier.[14][15] Many other pioneers in the field who helped to uncover the layers of complexity of biochemistry have been proclaimed founders of modern biochemistry, for example Emil Fischer for his work on the chemistry of proteins,[16] and F. Gowland Hopkins on enzymes and the dynamic nature of biochemistry.[17]

The term "biochemistry" itself is derived from a combination of biology and chemistry. In 1877, Felix Hoppe-Seyler used the term (biochemie in German) as a synonym for physiological chemistry in the foreword to the first issue of Zeitschrift fr Physiologische Chemie (Journal of Physiological Chemistry) where he argued for the setting up of institutes dedicated to this field of study.[18][19] The German chemist Carl Neuberg however is often cited to have coined the word in 1903,[20][21][22] while some credited it to Franz Hofmeister.[23]

It was once generally believed that life and its materials had some essential property or substance (often referred to as the "vital principle") distinct from any found in non-living matter, and it was thought that only living beings could produce the molecules of life.[25] Then, in 1828, Friedrich Whler published a paper on the synthesis of urea, proving that organic compounds can be created artificially.[26] Since then, biochemistry has advanced, especially since the mid-20th century, with the development of new techniques such as chromatography, X-ray diffraction, dual polarisation interferometry, NMR spectroscopy, radioisotopic labeling, electron microscopy, and molecular dynamics simulations. These techniques allowed for the discovery and detailed analysis of many molecules and metabolic pathways of the cell, such as glycolysis and the Krebs cycle (citric acid cycle).

Another significant historic event in biochemistry is the discovery of the gene and its role in the transfer of information in the cell. This part of biochemistry is often called molecular biology.[27] In the 1950s, James D. Watson, Francis Crick, Rosalind Franklin, and Maurice Wilkins were instrumental in solving DNA structure and suggesting its relationship with genetic transfer of information.[28] In 1958, George Beadle and Edward Tatum received the Nobel Prize for work in fungi showing that one gene produces one enzyme.[29] In 1988, Colin Pitchfork was the first person convicted of murder with DNA evidence, which led to the growth of forensic science.[30] More recently, Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for discovering the role of RNA interference (RNAi), in the silencing of gene expression.[31]

Around two dozen of the 92 naturally occurring chemical elements are essential to various kinds of biological life. Most rare elements on Earth are not needed by life (exceptions being selenium and iodine), while a few common ones (aluminum and titanium) are not used. Most organisms share element needs, but there are a few differences between plants and animals. For example, ocean algae use bromine, but land plants and animals seem to need none. All animals require sodium, but some plants do not. Plants need boron and silicon, but animals may not (or may need ultra-small amounts).

Just six elementscarbon, hydrogen, nitrogen, oxygen, calcium, and phosphorusmake up almost 99% of the mass of living cells, including those in the human body (see composition of the human body for a complete list). In addition to the six major elements that compose most of the human body, humans require smaller amounts of possibly 18 more.[32]

The four main classes of molecules in biochemistry (often called biomolecules) are carbohydrates, lipids, proteins, and nucleic acids.[33] Many biological molecules are polymers: in this terminology, monomers are relatively small micromolecules that are linked together to create large macromolecules known as polymers. When monomers are linked together to synthesize a biological polymer, they undergo a process called dehydration synthesis. Different macromolecules can assemble in larger complexes, often needed for biological activity.

The function of carbohydrates includes energy storage and providing structure. Sugars are carbohydrates, but not all carbohydrates are sugars. There are more carbohydrates on Earth than any other known type of biomolecule; they are used to store energy and genetic information, as well as play important roles in cell to cell interactions and communications.

The simplest type of carbohydrate is a monosaccharide, which among other properties contains carbon, hydrogen, and oxygen, mostly in a ratio of 1:2:1 (generalized formula CnH2nOn, where n is at least 3). Glucose (C6H12O6) is one of the most important carbohydrates, others include fructose (C6H12O6), the sugar commonly associated with the sweet taste of fruits,[34][a] and deoxyribose (C5H10O4).

A monosaccharide can switch from the acyclic (open-chain) form to a cyclic form, through a nucleophilic addition reaction between the carbonyl group and one of the hydroxyls of the same molecule. The reaction creates a ring of carbon atoms closed by one bridging oxygen atom. The resulting molecule has an hemiacetal or hemiketal group, depending on whether the linear form was an aldose or a ketose. The reaction is easily reversed, yielding the original open-chain form.[35]

In these cyclic forms, the ring usually has 5 or 6 atoms. These forms are called furanoses and pyranoses, respectively by analogy with furan and pyran, the simplest compounds with the same carbon-oxygen ring (although they lack the double bonds of these two molecules). For example, the aldohexose glucose may form a hemiacetal linkage between the hydroxyl on carbon 1 and the oxygen on carbon 4, yielding a molecule with a 5-membered ring, called glucofuranose. The same reaction can take place between carbons 1 and 5 to form a molecule with a 6-membered ring, called glucopyranose. Cyclic forms with a 7-atom ring (the same of oxepane), rarely encountered, are called heptoses.

When two monosaccharides undergo dehydration synthesis whereby a molecule of water is released, as two hydrogen atoms and one oxygen atom are lost from the two monosaccharides. The new molecule, consisting of two monosaccharides, is called a disaccharide and is conjoined together by a glycosidic or ether bond. The reverse reaction can also occur, using a molecule of water to split up a disaccharide and break the glycosidic bond; this is termed hydrolysis. The most well-known disaccharide is sucrose, ordinary sugar (in scientific contexts, called table sugar or cane sugar to differentiate it from other sugars). Sucrose consists of a glucose molecule and a fructose molecule joined together. Another important disaccharide is lactose, consisting of a glucose molecule and a galactose molecule. As most humans age, the production of lactase, the enzyme that hydrolyzes lactose back into glucose and galactose, typically decreases. This results in lactase deficiency, also called lactose intolerance.

When a few (around three to six) monosaccharides are joined, it is called an oligosaccharide (oligo- meaning "few"). These molecules tend to be used as markers and signals, as well as having some other uses.[36] Many monosaccharides joined together make a polysaccharide. They can be joined together in one long linear chain, or they may be branched. Two of the most common polysaccharides are cellulose and glycogen, both consisting of repeating glucose monomers. Examples are Cellulose which is an important structural component of plant's cell walls, and glycogen, used as a form of energy storage in animals.

Sugar can be characterized by having reducing or non-reducing ends. A reducing end of a carbohydrate is a carbon atom that can be in equilibrium with the open-chain aldehyde (aldose) or keto form (ketose). If the joining of monomers takes place at such a carbon atom, the free hydroxy group of the pyranose or furanose form is exchanged with an OH-side-chain of another sugar, yielding a full acetal. This prevents opening of the chain to the aldehyde or keto form and renders the modified residue non-reducing. Lactose contains a reducing end at its glucose moiety, whereas the galactose moiety form a full acetal with the C4-OH group of glucose. Saccharose does not have a reducing end because of full acetal formation between the aldehyde carbon of glucose (C1) and the keto carbon of fructose (C2).

Lipids comprises a diverse range of molecules and to some extent is a catchall for relatively water-insoluble or nonpolar compounds of biological origin, including waxes, fatty acids, fatty-acid derived phospholipids, sphingolipids, glycolipids, and terpenoids (e.g., retinoids and steroids). Some lipids are linear aliphatic molecules, while others have ring structures. Some are aromatic, while others are not. Some are flexible, while others are rigid.[39]

Lipids are usually made from one molecule of glycerol combined with other molecules. In triglycerides, the main group of bulk lipids, there is one molecule of glycerol and three fatty acids. Fatty acids are considered the monomer in that case, and may be saturated (no double bonds in the carbon chain) or unsaturated (one or more double bonds in the carbon chain).[40]

Most lipids have some polar character in addition to being largely nonpolar. In general, the bulk of their structure is nonpolar or hydrophobic ("water-fearing"), meaning that it does not interact well with polar solvents like water. Another part of their structure is polar or hydrophilic ("water-loving") and will tend to associate with polar solvents like water. This makes them amphiphilic molecules (having both hydrophobic and hydrophilic portions). In the case of cholesterol, the polar group is a mere -OH (hydroxyl or alcohol). In the case of phospholipids, the polar groups are considerably larger and more polar, as described below.[41]

Lipids are an integral part of our daily diet. Most oils and milk products that we use for cooking and eating like butter, cheese, ghee etc., are composed of fats. Vegetable oils are rich in various polyunsaturated fatty acids (PUFA). Lipid-containing foods undergo digestion within the body and are broken into fatty acids and glycerol, which are the final degradation products of fats and lipids. Lipids, especially phospholipids, are also used in various pharmaceutical products, either as co-solubilisers (e.g., in parenteral infusions) or else as drug carrier components (e.g., in a liposome or transfersome).

Proteins are very large molecules macro-biopolymers made from monomers called amino acids. An amino acid consists of a carbon atom bound to four groups. One is an amino group, NH2, and one is a carboxylic acid group, COOH (although these exist as NH3+ and COO under physiologic conditions). The third is a simple hydrogen atom. The fourth is commonly denoted "R" and is different for each amino acid. There are 20 standard amino acids, each containing a carboxyl group, an amino group, and a side-chain (known as an "R" group). The "R" group is what makes each amino acid different, and the properties of the side-chains greatly influence the overall three-dimensional conformation of a protein. Some amino acids have functions by themselves or in a modified form; for instance, glutamate functions as an important neurotransmitter. Amino acids can be joined via a peptide bond. In this dehydration synthesis, a water molecule is removed and the peptide bond connects the nitrogen of one amino acid's amino group to the carbon of the other's carboxylic acid group. The resulting molecule is called a dipeptide, and short stretches of amino acids (usually, fewer than thirty) are called peptides or polypeptides. Longer stretches merit the title proteins. As an example, the important blood serum protein albumin contains 585 amino acid residues.[42]

Some proteins perform largely structural roles. For instance, movements of the proteins actin and myosin ultimately are responsible for the contraction of skeletal muscle. One property many proteins have is that they specifically bind to a certain molecule or class of moleculesthey may be extremely selective in what they bind. Antibodies are an example of proteins that attach to one specific type of molecule. In fact, the enzyme-linked immunosorbent assay (ELISA), which uses antibodies, is one of the most sensitive tests modern medicine uses to detect various biomolecules. Probably the most important proteins, however, are the enzymes. Virtually every reaction in a living cell requires an enzyme to lower the activation energy of the reaction. These molecules recognize specific reactant molecules called substrates; they then catalyze the reaction between them. By lowering the activation energy, the enzyme speeds up that reaction by a rate of 1011 or more; a reaction that would normally take over 3,000 years to complete spontaneously might take less than a second with an enzyme. The enzyme itself is not used up in the process, and is free to catalyze the same reaction with a new set of substrates. Using various modifiers, the activity of the enzyme can be regulated, enabling control of the biochemistry of the cell as a whole.

The structure of proteins is traditionally described in a hierarchy of four levels. The primary structure of a protein simply consists of its linear sequence of amino acids; for instance, "alanine-glycine-tryptophan-serine-glutamate-asparagine-glycine-lysine-". Secondary structure is concerned with local morphology (morphology being the study of structure). Some combinations of amino acids will tend to curl up in a coil called an -helix or into a sheet called a -sheet; some -helixes can be seen in the hemoglobin schematic above. Tertiary structure is the entire three-dimensional shape of the protein. This shape is determined by the sequence of amino acids. In fact, a single change can change the entire structure. The alpha chain of hemoglobin contains 146 amino acid residues; substitution of the glutamate residue at position 6 with a valine residue changes the behavior of hemoglobin so much that it results in sickle-cell disease. Finally, quaternary structure is concerned with the structure of a protein with multiple peptide subunits, like hemoglobin with its four subunits. Not all proteins have more than one subunit.[43]

Ingested proteins are usually broken up into single amino acids or dipeptides in the small intestine, and then absorbed. They can then be joined to make new proteins. Intermediate products of glycolysis, the citric acid cycle, and the pentose phosphate pathway can be used to make all twenty amino acids, and most bacteria and plants possess all the necessary enzymes to synthesize them. Humans and other mammals, however, can synthesize only half of them. They cannot synthesize isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. These are the essential amino acids, since it is essential to ingest them. Mammals do possess the enzymes to synthesize alanine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine, the nonessential amino acids. While they can synthesize arginine and histidine, they cannot produce it in sufficient amounts for young, growing animals, and so these are often considered essential amino acids.

If the amino group is removed from an amino acid, it leaves behind a carbon skeleton called an -keto acid. Enzymes called transaminases can easily transfer the amino group from one amino acid (making it an -keto acid) to another -keto acid (making it an amino acid). This is important in the biosynthesis of amino acids, as for many of the pathways, intermediates from other biochemical pathways are converted to the -keto acid skeleton, and then an amino group is added, often via transamination. The amino acids may then be linked together to make a protein.[44]

A similar process is used to break down proteins. It is first hydrolyzed into its component amino acids. Free ammonia (NH3), existing as the ammonium ion (NH4+) in blood, is toxic to life forms. A suitable method for excreting it must therefore exist. Different tactics have evolved in different animals, depending on the animals' needs. Unicellular organisms, of course, simply release the ammonia into the environment. Likewise, bony fish can release the ammonia into the water where it is quickly diluted. In general, mammals convert the ammonia into urea, via the urea cycle.[45]

In order to determine whether two proteins are related, or in other words to decide whether they are homologous or not, scientists use sequence-comparison methods. Methods like sequence alignments and structural alignments are powerful tools that help scientists identify homologies between related molecules.[46] The relevance of finding homologies among proteins goes beyond forming an evolutionary pattern of protein families. By finding how similar two protein sequences are, we acquire knowledge about their structure and therefore their function.

Nucleic acids, so called because of its prevalence in cellular nuclei, is the generic name of the family of biopolymers. They are complex, high-molecular-weight biochemical macromolecules that can convey genetic information in all living cells and viruses.[2] The monomers are called nucleotides, and each consists of three components: a nitrogenous heterocyclic base (either a purine or a pyrimidine), a pentose sugar, and a phosphate group.[47]

The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).[48] The phosphate group and the sugar of each nucleotide bond with each other to form the backbone of the nucleic acid, while the sequence of nitrogenous bases stores the information. The most common nitrogenous bases are adenine, cytosine, guanine, thymine, and uracil. The nitrogenous bases of each strand of a nucleic acid will form hydrogen bonds with certain other nitrogenous bases in a complementary strand of nucleic acid (similar to a zipper). Adenine binds with thymine and uracil; Thymine binds only with adenine; and cytosine and guanine can bind only with one another.

Aside from the genetic material of the cell, nucleic acids often play a role as second messengers, as well as forming the base molecule for adenosine triphosphate (ATP), the primary energy-carrier molecule found in all living organisms.[49] Also, the nitrogenous bases possible in the two nucleic acids are different: adenine, cytosine, and guanine occur in both RNA and DNA, while thymine occurs only in DNA and uracil occurs in RNA.

Glucose is the major energy source in most life forms. For instance, polysaccharides are broken down into their monomers (glycogen phosphorylase removes glucose residues from glycogen). Disaccharides like lactose or sucrose are cleaved into their two component monosaccharides.

Glucose is mainly metabolized by a very important ten-step pathway called glycolysis, the net result of which is to break down one molecule of glucose into two molecules of pyruvate. This also produces a net two molecules of ATP, the energy currency of cells, along with two reducing equivalents of converting NAD+ (nicotinamide adenine dinucleotide:oxidised form) to NADH (nicotinamide adenine dinucleotide:reduced form). This does not require oxygen; if no oxygen is available (or the cell cannot use oxygen), the NAD is restored by converting the pyruvate to lactate (lactic acid) (e.g., in humans) or to ethanol plus carbon dioxide (e.g., in yeast). Other monosaccharides like galactose and fructose can be converted into intermediates of the glycolytic pathway.[50]

In aerobic cells with sufficient oxygen, as in most human cells, the pyruvate is further metabolized. It is irreversibly converted to acetyl-CoA, giving off one carbon atom as the waste product carbon dioxide, generating another reducing equivalent as NADH. The two molecules acetyl-CoA (from one molecule of glucose) then enter the citric acid cycle, producing two more molecules of ATP, six more NADH molecules and two reduced (ubi)quinones (via FADH2 as enzyme-bound cofactor), and releasing the remaining carbon atoms as carbon dioxide. The produced NADH and quinol molecules then feed into the enzyme complexes of the respiratory chain, an electron transport system transferring the electrons ultimately to oxygen and conserving the released energy in the form of a proton gradient over a membrane (inner mitochondrial membrane in eukaryotes). Thus, oxygen is reduced to water and the original electron acceptors NAD+ and quinone are regenerated. This is why humans breathe in oxygen and breathe out carbon dioxide. The energy released from transferring the electrons from high-energy states in NADH and quinol is conserved first as proton gradient and converted to ATP via ATP synthase. This generates an additional 28 molecules of ATP (24 from the 8 NADH + 4 from the 2 quinols), totaling to 32 molecules of ATP conserved per degraded glucose (two from glycolysis + two from the citrate cycle).[51] It is clear that using oxygen to completely oxidize glucose provides an organism with far more energy than any oxygen-independent metabolic feature, and this is thought to be the reason why complex life appeared only after Earth's atmosphere accumulated large amounts of oxygen.

In vertebrates, vigorously contracting skeletal muscles (during weightlifting or sprinting, for example) do not receive enough oxygen to meet the energy demand, and so they shift to anaerobic metabolism, converting glucose to lactate. The liver regenerates the glucose, using a process called gluconeogenesis. This process is not quite the opposite of glycolysis, and actually requires three times the amount of energy gained from glycolysis (six molecules of ATP are used, compared to the two gained in glycolysis). Analogous to the above reactions, the glucose produced can then undergo glycolysis in tissues that need energy, be stored as glycogen (or starch in plants), or be converted to other monosaccharides or joined into di- or oligosaccharides. The combined pathways of glycolysis during exercise, lactate's crossing via the bloodstream to the liver, subsequent gluconeogenesis and release of glucose into the bloodstream is called the Cori cycle.[52]

Researchers in biochemistry use specific techniques native to biochemistry, but increasingly combine these with techniques and ideas developed in the fields of genetics, molecular biology and biophysics. There has never been a hard-line among these disciplines in terms of content and technique. Today, the terms molecular biology and biochemistry are nearly interchangeable. The following figure is a schematic that depicts one possible view of the relationship between the fields:

a. ^ Fructose is not the only sugar found in fruits. Glucose and sucrose are also found in varying quantities in various fruits, and indeed sometimes exceed the fructose present. For example, 32% of the edible portion of date is glucose, compared with 23.70% fructose and 8.20% sucrose. However, peaches contain more sucrose (6.66%) than they do fructose (0.93%) or glucose (1.47%).[55]

Go here to see the original:
Biochemistry - Wikipedia

Genetics – Wikipedia

This article is about the general scientific term. For the scientific journal, see Genetics (journal).

Genetics is the study of genes, genetic variation, and heredity in living organisms.[1][2] It is generally considered a field of biology, but it intersects frequently with many of the life sciences and is strongly linked with the study of information systems.

The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied 'trait inheritance', patterns in the way traits were handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance) and within the context of a population. Genetics has given rise to a number of sub-fields including epigenetics and population genetics. Organisms studied within the broad field span the domain of life, including bacteria, plants, animals, and humans.

Genetic processes work in combination with an organism's environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intra- or extra-cellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate due to lack of water and nutrients in its environment.

The word genetics stems from the Ancient Greek genetikos meaning "genitive"/"generative", which in turn derives from genesis meaning "origin".[3][4][5]

The observation that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding.[6] The modern science of genetics, seeking to understand this process, began with the work of Gregor Mendel in the mid-19th century.[7]

Prior to Mendel, Imre Festetics, a Hungarian noble, who lived in Kszeg before Mendel, was the first who used the word "genetics". He described several rules of genetic inheritance in his work The genetic law of the Nature (Die genetische Gestze der Natur, 1819). His second law is the same as what Mendel published. In his third law, he developed the basic principles of mutation (he can be considered a forerunner of Hugo de Vries.)[8]

Other theories of inheritance preceded his work. A popular theory during Mendel's time was the concept of blending inheritance: the idea that individuals inherit a smooth blend of traits from their parents.[9] Mendel's work provided examples where traits were definitely not blended after hybridization, showing that traits are produced by combinations of distinct genes rather than a continuous blend. Blending of traits in the progeny is now explained by the action of multiple genes with quantitative effects. Another theory that had some support at that time was the inheritance of acquired characteristics: the belief that individuals inherit traits strengthened by their parents. This theory (commonly associated with Jean-Baptiste Lamarck) is now known to be wrongthe experiences of individuals do not affect the genes they pass to their children,[10] although evidence in the field of epigenetics has revived some aspects of Lamarck's theory.[11] Other theories included the pangenesis of Charles Darwin (which had both acquired and inherited aspects) and Francis Galton's reformulation of pangenesis as both particulate and inherited.[12]

Modern genetics started with Gregor Johann Mendel, a scientist and Augustinian friar who studied the nature of inheritance in plants. In his paper "Versuche ber Pflanzenhybriden" ("Experiments on Plant Hybridization"), presented in 1865 to the Naturforschender Verein (Society for Research in Nature) in Brnn, Mendel traced the inheritance patterns of certain traits in pea plants and described them mathematically.[13] Although this pattern of inheritance could only be observed for a few traits, Mendel's work suggested that heredity was particulate, not acquired, and that the inheritance patterns of many traits could be explained through simple rules and ratios.

The importance of Mendel's work did not gain wide understanding until the 1890s, after his death, when other scientists working on similar problems re-discovered his research. William Bateson, a proponent of Mendel's work, coined the word genetics in 1905.[14][15] (The adjective genetic, derived from the Greek word genesis, "origin", predates the noun and was first used in a biological sense in 1860.)[16] Bateson both acted as a mentor and was aided significantly by the work of women scientists from Newnham College at Cambridge, specifically the work of Becky Saunders, Nora Darwin Barlow, and Muriel Wheldale Onslow.[17] Bateson popularized the usage of the word genetics to describe the study of inheritance in his inaugural address to the Third International Conference on Plant Hybridization in London, England, in 1906.[18]

After the rediscovery of Mendel's work, scientists tried to determine which molecules in the cell were responsible for inheritance. In 1911, Thomas Hunt Morgan argued that genes are on chromosomes, based on observations of a sex-linked white eye mutation in fruit flies.[19] In 1913, his student Alfred Sturtevant used the phenomenon of genetic linkage to show that genes are arranged linearly on the chromosome.[20]

Although genes were known to exist on chromosomes, chromosomes are composed of both protein and DNA, and scientists did not know which of the two is responsible for inheritance. In 1928, Frederick Griffith discovered the phenomenon of transformation (see Griffith's experiment): dead bacteria could transfer genetic material to "transform" other still-living bacteria. Sixteen years later, in 1944, the AveryMacLeodMcCarty experiment identified DNA as the molecule responsible for transformation.[21] The role of the nucleus as the repository of genetic information in eukaryotes had been established by Hmmerling in 1943 in his work on the single celled alga Acetabularia.[22] The HersheyChase experiment in 1952 confirmed that DNA (rather than protein) is the genetic material of the viruses that infect bacteria, providing further evidence that DNA is the molecule responsible for inheritance.[23]

James Watson and Francis Crick determined the structure of DNA in 1953, using the X-ray crystallography work of Rosalind Franklin and Maurice Wilkins that indicated DNA had a helical structure (i.e., shaped like a corkscrew).[24][25] Their double-helix model had two strands of DNA with the nucleotides pointing inward, each matching a complementary nucleotide on the other strand to form what looks like rungs on a twisted ladder.[26] This structure showed that genetic information exists in the sequence of nucleotides on each strand of DNA. The structure also suggested a simple method for replication: if the strands are separated, new partner strands can be reconstructed for each based on the sequence of the old strand. This property is what gives DNA its semi-conservative nature where one strand of new DNA is from an original parent strand.[27]

Although the structure of DNA showed how inheritance works, it was still not known how DNA influences the behavior of cells. In the following years, scientists tried to understand how DNA controls the process of protein production.[28] It was discovered that the cell uses DNA as a template to create matching messenger RNA, molecules with nucleotides very similar to DNA. The nucleotide sequence of a messenger RNA is used to create an amino acid sequence in protein; this translation between nucleotide sequences and amino acid sequences is known as the genetic code.[29]

With the newfound molecular understanding of inheritance came an explosion of research.[30] A notable theory arose from Tomoko Ohta in 1973 with her amendment to the neutral theory of molecular evolution through publishing the nearly neutral theory of molecular evolution. In this theory, Ohta stressed the importance of natural selection and the environment to the rate at which genetic evolution occurs.[31] One important development was chain-termination DNA sequencing in 1977 by Frederick Sanger. This technology allows scientists to read the nucleotide sequence of a DNA molecule.[32] In 1983, Kary Banks Mullis developed the polymerase chain reaction, providing a quick way to isolate and amplify a specific section of DNA from a mixture.[33] The efforts of the Human Genome Project, Department of Energy, NIH, and parallel private efforts by Celera Genomics led to the sequencing of the human genome in 2003.[34]

At its most fundamental level, inheritance in organisms occurs by passing discrete heritable units, called genes, from parents to progeny.[35] This property was first observed by Gregor Mendel, who studied the segregation of heritable traits in pea plants.[13][36] In his experiments studying the trait for flower color, Mendel observed that the flowers of each pea plant were either purple or whitebut never an intermediate between the two colors. These different, discrete versions of the same gene are called alleles.

In the case of the pea, which is a diploid species, each individual plant has two copies of each gene, one copy inherited from each parent.[37] Many species, including humans, have this pattern of inheritance. Diploid organisms with two copies of the same allele of a given gene are called homozygous at that gene locus, while organisms with two different alleles of a given gene are called heterozygous.

The set of alleles for a given organism is called its genotype, while the observable traits of the organism are called its phenotype. When organisms are heterozygous at a gene, often one allele is called dominant as its qualities dominate the phenotype of the organism, while the other allele is called recessive as its qualities recede and are not observed. Some alleles do not have complete dominance and instead have incomplete dominance by expressing an intermediate phenotype, or codominance by expressing both alleles at once.[38]

When a pair of organisms reproduce sexually, their offspring randomly inherit one of the two alleles from each parent. These observations of discrete inheritance and the segregation of alleles are collectively known as Mendel's first law or the Law of Segregation.

Geneticists use diagrams and symbols to describe inheritance. A gene is represented by one or a few letters. Often a "+" symbol is used to mark the usual, non-mutant allele for a gene.[39]

In fertilization and breeding experiments (and especially when discussing Mendel's laws) the parents are referred to as the "P" generation and the offspring as the "F1" (first filial) generation. When the F1 offspring mate with each other, the offspring are called the "F2" (second filial) generation. One of the common diagrams used to predict the result of cross-breeding is the Punnett square.

When studying human genetic diseases, geneticists often use pedigree charts to represent the inheritance of traits.[40] These charts map the inheritance of a trait in a family tree.

Organisms have thousands of genes, and in sexually reproducing organisms these genes generally assort independently of each other. This means that the inheritance of an allele for yellow or green pea color is unrelated to the inheritance of alleles for white or purple flowers. This phenomenon, known as "Mendel's second law" or the "Law of independent assortment", means that the alleles of different genes get shuffled between parents to form offspring with many different combinations. (Some genes do not assort independently, demonstrating genetic linkage, a topic discussed later in this article.)

Often different genes can interact in a way that influences the same trait. In the Blue-eyed Mary (Omphalodes verna), for example, there exists a gene with alleles that determine the color of flowers: blue or magenta. Another gene, however, controls whether the flowers have color at all or are white. When a plant has two copies of this white allele, its flowers are whiteregardless of whether the first gene has blue or magenta alleles. This interaction between genes is called epistasis, with the second gene epistatic to the first.[41]

Many traits are not discrete features (e.g. purple or white flowers) but are instead continuous features (e.g. human height and skin color). These complex traits are products of many genes.[42] The influence of these genes is mediated, to varying degrees, by the environment an organism has experienced. The degree to which an organism's genes contribute to a complex trait is called heritability.[43] Measurement of the heritability of a trait is relativein a more variable environment, the environment has a bigger influence on the total variation of the trait. For example, human height is a trait with complex causes. It has a heritability of 89% in the United States. In Nigeria, however, where people experience a more variable access to good nutrition and health care, height has a heritability of only 62%.[44]

The molecular basis for genes is deoxyribonucleic acid (DNA). DNA is composed of a chain of nucleotides, of which there are four types: adenine (A), cytosine (C), guanine (G), and thymine (T). Genetic information exists in the sequence of these nucleotides, and genes exist as stretches of sequence along the DNA chain.[45]Viruses are the only exception to this rulesometimes viruses use the very similar molecule, RNA, instead of DNA as their genetic material.[46] Viruses cannot reproduce without a host and are unaffected by many genetic processes, so tend not to be considered living organisms.

DNA normally exists as a double-stranded molecule, coiled into the shape of a double helix. Each nucleotide in DNA preferentially pairs with its partner nucleotide on the opposite strand: A pairs with T, and C pairs with G. Thus, in its two-stranded form, each strand effectively contains all necessary information, redundant with its partner strand. This structure of DNA is the physical basis for inheritance: DNA replication duplicates the genetic information by splitting the strands and using each strand as a template for synthesis of a new partner strand.[47]

Genes are arranged linearly along long chains of DNA base-pair sequences. In bacteria, each cell usually contains a single circular genophore, while eukaryotic organisms (such as plants and animals) have their DNA arranged in multiple linear chromosomes. These DNA strands are often extremely long; the largest human chromosome, for example, is about 247 million base pairs in length.[48] The DNA of a chromosome is associated with structural proteins that organize, compact and control access to the DNA, forming a material called chromatin; in eukaryotes, chromatin is usually composed of nucleosomes, segments of DNA wound around cores of histone proteins.[49] The full set of hereditary material in an organism (usually the combined DNA sequences of all chromosomes) is called the genome.

While haploid organisms have only one copy of each chromosome, most animals and many plants are diploid, containing two of each chromosome and thus two copies of every gene.[37] The two alleles for a gene are located on identical loci of the two homologous chromosomes, each allele inherited from a different parent.

Many species have so-called sex chromosomes that determine the gender of each organism.[50] In humans and many other animals, the Y chromosome contains the gene that triggers the development of the specifically male characteristics. In evolution, this chromosome has lost most of its content and also most of its genes, while the X chromosome is similar to the other chromosomes and contains many genes. The X and Y chromosomes form a strongly heterogeneous pair.

When cells divide, their full genome is copied and each daughter cell inherits one copy. This process, called mitosis, is the simplest form of reproduction and is the basis for asexual reproduction. Asexual reproduction can also occur in multicellular organisms, producing offspring that inherit their genome from a single parent. Offspring that are genetically identical to their parents are called clones.

Eukaryotic organisms often use sexual reproduction to generate offspring that contain a mixture of genetic material inherited from two different parents. The process of sexual reproduction alternates between forms that contain single copies of the genome (haploid) and double copies (diploid).[37] Haploid cells fuse and combine genetic material to create a diploid cell with paired chromosomes. Diploid organisms form haploids by dividing, without replicating their DNA, to create daughter cells that randomly inherit one of each pair of chromosomes. Most animals and many plants are diploid for most of their lifespan, with the haploid form reduced to single cell gametes such as sperm or eggs.

Although they do not use the haploid/diploid method of sexual reproduction, bacteria have many methods of acquiring new genetic information. Some bacteria can undergo conjugation, transferring a small circular piece of DNA to another bacterium.[51] Bacteria can also take up raw DNA fragments found in the environment and integrate them into their genomes, a phenomenon known as transformation.[52] These processes result in horizontal gene transfer, transmitting fragments of genetic information between organisms that would be otherwise unrelated.

The diploid nature of chromosomes allows for genes on different chromosomes to assort independently or be separated from their homologous pair during sexual reproduction wherein haploid gametes are formed. In this way new combinations of genes can occur in the offspring of a mating pair. Genes on the same chromosome would theoretically never recombine. However, they do via the cellular process of chromosomal crossover. During crossover, chromosomes exchange stretches of DNA, effectively shuffling the gene alleles between the chromosomes.[53] This process of chromosomal crossover generally occurs during meiosis, a series of cell divisions that creates haploid cells.

The first cytological demonstration of crossing over was performed by Harriet Creighton and Barbara McClintock in 1931. Their research and experiments on corn provided cytological evidence for the genetic theory that linked genes on paired chromosomes do in fact exchange places from one homolog to the other.

The probability of chromosomal crossover occurring between two given points on the chromosome is related to the distance between the points. For an arbitrarily long distance, the probability of crossover is high enough that the inheritance of the genes is effectively uncorrelated.[54] For genes that are closer together, however, the lower probability of crossover means that the genes demonstrate genetic linkage; alleles for the two genes tend to be inherited together. The amounts of linkage between a series of genes can be combined to form a linear linkage map that roughly describes the arrangement of the genes along the chromosome.[55]

Genes generally express their functional effect through the production of proteins, which are complex molecules responsible for most functions in the cell. Proteins are made up of one or more polypeptide chains, each of which is composed of a sequence of amino acids, and the DNA sequence of a gene (through an RNA intermediate) is used to produce a specific amino acid sequence. This process begins with the production of an RNA molecule with a sequence matching the gene's DNA sequence, a process called transcription.

This messenger RNA molecule is then used to produce a corresponding amino acid sequence through a process called translation. Each group of three nucleotides in the sequence, called a codon, corresponds either to one of the twenty possible amino acids in a protein or an instruction to end the amino acid sequence; this correspondence is called the genetic code.[56] The flow of information is unidirectional: information is transferred from nucleotide sequences into the amino acid sequence of proteins, but it never transfers from protein back into the sequence of DNAa phenomenon Francis Crick called the central dogma of molecular biology.[57]

The specific sequence of amino acids results in a unique three-dimensional structure for that protein, and the three-dimensional structures of proteins are related to their functions.[58][59] Some are simple structural molecules, like the fibers formed by the protein collagen. Proteins can bind to other proteins and simple molecules, sometimes acting as enzymes by facilitating chemical reactions within the bound molecules (without changing the structure of the protein itself). Protein structure is dynamic; the protein hemoglobin bends into slightly different forms as it facilitates the capture, transport, and release of oxygen molecules within mammalian blood.

A single nucleotide difference within DNA can cause a change in the amino acid sequence of a protein. Because protein structures are the result of their amino acid sequences, some changes can dramatically change the properties of a protein by destabilizing the structure or changing the surface of the protein in a way that changes its interaction with other proteins and molecules. For example, sickle-cell anemia is a human genetic disease that results from a single base difference within the coding region for the -globin section of hemoglobin, causing a single amino acid change that changes hemoglobin's physical properties.[60] Sickle-cell versions of hemoglobin stick to themselves, stacking to form fibers that distort the shape of red blood cells carrying the protein. These sickle-shaped cells no longer flow smoothly through blood vessels, having a tendency to clog or degrade, causing the medical problems associated with this disease.

Some DNA sequences are transcribed into RNA but are not translated into protein productssuch RNA molecules are called non-coding RNA. In some cases, these products fold into structures which are involved in critical cell functions (e.g. ribosomal RNA and transfer RNA). RNA can also have regulatory effects through hybridization interactions with other RNA molecules (e.g. microRNA).

Although genes contain all the information an organism uses to function, the environment plays an important role in determining the ultimate phenotypes an organism displays. This is the complementary relationship often referred to as "nature and nurture". The phenotype of an organism depends on the interaction of genes and the environment. An interesting example is the coat coloration of the Siamese cat. In this case, the body temperature of the cat plays the role of the environment. The cat's genes code for dark hair, thus the hair-producing cells in the cat make cellular proteins resulting in dark hair. But these dark hair-producing proteins are sensitive to temperature (i.e. have a mutation causing temperature-sensitivity) and denature in higher-temperature environments, failing to produce dark-hair pigment in areas where the cat has a higher body temperature. In a low-temperature environment, however, the protein's structure is stable and produces dark-hair pigment normally. The protein remains functional in areas of skin that are colder such as its legs, ears, tail and face so the cat has dark-hair at its extremities.[61]

Environment plays a major role in effects of the human genetic disease phenylketonuria.[62] The mutation that causes phenylketonuria disrupts the ability of the body to break down the amino acid phenylalanine, causing a toxic build-up of an intermediate molecule that, in turn, causes severe symptoms of progressive mental retardation and seizures. However, if someone with the phenylketonuria mutation follows a strict diet that avoids this amino acid, they remain normal and healthy.

A popular method for determining how genes and environment ("nature and nurture") contribute to a phenotype involves studying identical and fraternal twins, or other siblings of multiple births.[63] Because identical siblings come from the same zygote, they are genetically the same. Fraternal twins are as genetically different from one another as normal siblings. By comparing how often a certain disorder occurs in a pair of identical twins to how often it occurs in a pair of fraternal twins, scientists can determine whether that disorder is caused by genetic or postnatal environmental factors whether it has "nature" or "nurture" causes. One famous example is the multiple birth study of the Genain quadruplets, who were identical quadruplets all diagnosed with schizophrenia.[64] However such tests cannot separate genetic factors from environmental factors affecting fetal development.

The genome of a given organism contains thousands of genes, but not all these genes need to be active at any given moment. A gene is expressed when it is being transcribed into mRNA and there exist many cellular methods of controlling the expression of genes such that proteins are produced only when needed by the cell. Transcription factors are regulatory proteins that bind to DNA, either promoting or inhibiting the transcription of a gene.[65] Within the genome of Escherichia coli bacteria, for example, there exists a series of genes necessary for the synthesis of the amino acid tryptophan. However, when tryptophan is already available to the cell, these genes for tryptophan synthesis are no longer needed. The presence of tryptophan directly affects the activity of the genestryptophan molecules bind to the tryptophan repressor (a transcription factor), changing the repressor's structure such that the repressor binds to the genes. The tryptophan repressor blocks the transcription and expression of the genes, thereby creating negative feedback regulation of the tryptophan synthesis process.[66]

Differences in gene expression are especially clear within multicellular organisms, where cells all contain the same genome but have very different structures and behaviors due to the expression of different sets of genes. All the cells in a multicellular organism derive from a single cell, differentiating into variant cell types in response to external and intercellular signals and gradually establishing different patterns of gene expression to create different behaviors. As no single gene is responsible for the development of structures within multicellular organisms, these patterns arise from the complex interactions between many cells.

Within eukaryotes, there exist structural features of chromatin that influence the transcription of genes, often in the form of modifications to DNA and chromatin that are stably inherited by daughter cells.[67] These features are called "epigenetic" because they exist "on top" of the DNA sequence and retain inheritance from one cell generation to the next. Because of epigenetic features, different cell types grown within the same medium can retain very different properties. Although epigenetic features are generally dynamic over the course of development, some, like the phenomenon of paramutation, have multigenerational inheritance and exist as rare exceptions to the general rule of DNA as the basis for inheritance.[68]

During the process of DNA replication, errors occasionally occur in the polymerization of the second strand. These errors, called mutations, can affect the phenotype of an organism, especially if they occur within the protein coding sequence of a gene. Error rates are usually very low1 error in every 10100million basesdue to the "proofreading" ability of DNA polymerases.[69][70] Processes that increase the rate of changes in DNA are called mutagenic: mutagenic chemicals promote errors in DNA replication, often by interfering with the structure of base-pairing, while UV radiation induces mutations by causing damage to the DNA structure.[71] Chemical damage to DNA occurs naturally as well and cells use DNA repair mechanisms to repair mismatches and breaks. The repair does not, however, always restore the original sequence.

In organisms that use chromosomal crossover to exchange DNA and recombine genes, errors in alignment during meiosis can also cause mutations.[72] Errors in crossover are especially likely when similar sequences cause partner chromosomes to adopt a mistaken alignment; this makes some regions in genomes more prone to mutating in this way. These errors create large structural changes in DNA sequence duplications, inversions, deletions of entire regions or the accidental exchange of whole parts of sequences between different chromosomes (chromosomal translocation).

Mutations alter an organism's genotype and occasionally this causes different phenotypes to appear. Most mutations have little effect on an organism's phenotype, health, or reproductive fitness.[73] Mutations that do have an effect are usually deleterious, but occasionally some can be beneficial.[74] Studies in the fly Drosophila melanogaster suggest that if a mutation changes a protein produced by a gene, about 70 percent of these mutations will be harmful with the remainder being either neutral or weakly beneficial.[75]

Population genetics studies the distribution of genetic differences within populations and how these distributions change over time.[76] Changes in the frequency of an allele in a population are mainly influenced by natural selection, where a given allele provides a selective or reproductive advantage to the organism,[77] as well as other factors such as mutation, genetic drift, genetic draft,[78]artificial selection and migration.[79]

Over many generations, the genomes of organisms can change significantly, resulting in evolution. In the process called adaptation, selection for beneficial mutations can cause a species to evolve into forms better able to survive in their environment.[80] New species are formed through the process of speciation, often caused by geographical separations that prevent populations from exchanging genes with each other.[81] The application of genetic principles to the study of population biology and evolution is known as the "modern synthesis".

By comparing the homology between different species' genomes, it is possible to calculate the evolutionary distance between them and when they may have diverged. Genetic comparisons are generally considered a more accurate method of characterizing the relatedness between species than the comparison of phenotypic characteristics. The evolutionary distances between species can be used to form evolutionary trees; these trees represent the common descent and divergence of species over time, although they do not show the transfer of genetic material between unrelated species (known as horizontal gene transfer and most common in bacteria).[82]

Although geneticists originally studied inheritance in a wide range of organisms, researchers began to specialize in studying the genetics of a particular subset of organisms. The fact that significant research already existed for a given organism would encourage new researchers to choose it for further study, and so eventually a few model organisms became the basis for most genetics research.[83] Common research topics in model organism genetics include the study of gene regulation and the involvement of genes in development and cancer.

Organisms were chosen, in part, for convenienceshort generation times and easy genetic manipulation made some organisms popular genetics research tools. Widely used model organisms include the gut bacterium Escherichia coli, the plant Arabidopsis thaliana, baker's yeast (Saccharomyces cerevisiae), the nematode Caenorhabditis elegans, the common fruit fly (Drosophila melanogaster), and the common house mouse (Mus musculus).

Medical genetics seeks to understand how genetic variation relates to human health and disease.[84] When searching for an unknown gene that may be involved in a disease, researchers commonly use genetic linkage and genetic pedigree charts to find the location on the genome associated with the disease. At the population level, researchers take advantage of Mendelian randomization to look for locations in the genome that are associated with diseases, a method especially useful for multigenic traits not clearly defined by a single gene.[85] Once a candidate gene is found, further research is often done on the corresponding gene the orthologous gene in model organisms. In addition to studying genetic diseases, the increased availability of genotyping methods has led to the field of pharmacogenetics: the study of how genotype can affect drug responses.[86]

Individuals differ in their inherited tendency to develop cancer,[87] and cancer is a genetic disease.[88] The process of cancer development in the body is a combination of events. Mutations occasionally occur within cells in the body as they divide. Although these mutations will not be inherited by any offspring, they can affect the behavior of cells, sometimes causing them to grow and divide more frequently. There are biological mechanisms that attempt to stop this process; signals are given to inappropriately dividing cells that should trigger cell death, but sometimes additional mutations occur that cause cells to ignore these messages. An internal process of natural selection occurs within the body and eventually mutations accumulate within cells to promote their own growth, creating a cancerous tumor that grows and invades various tissues of the body.

Normally, a cell divides only in response to signals called growth factors and stops growing once in contact with surrounding cells and in response to growth-inhibitory signals. It usually then divides a limited number of times and dies, staying within the epithelium where it is unable to migrate to other organs. To become a cancer cell, a cell has to accumulate mutations in a number of genes (37) that allow it to bypass this regulation: it no longer needs growth factors to divide, it continues growing when making contact to neighbor cells, and ignores inhibitory signals, it will keep growing indefinitely and is immortal, it will escape from the epithelium and ultimately may be able to escape from the primary tumor, cross the endothelium of a blood vessel, be transported by the bloodstream and will colonize a new organ, forming deadly metastasis. Although there are some genetic predispositions in a small fraction of cancers, the major fraction is due to a set of new genetic mutations that originally appear and accumulate in one or a small number of cells that will divide to form the tumor and are not transmitted to the progeny (somatic mutations). The most frequent mutations are a loss of function of p53 protein, a tumor suppressor, or in the p53 pathway, and gain of function mutations in the ras proteins, or in other oncogenes.

DNA can be manipulated in the laboratory. Restriction enzymes are commonly used enzymes that cut DNA at specific sequences, producing predictable fragments of DNA.[89] DNA fragments can be visualized through use of gel electrophoresis, which separates fragments according to their length.

The use of ligation enzymes allows DNA fragments to be connected. By binding ("ligating") fragments of DNA together from different sources, researchers can create recombinant DNA, the DNA often associated with genetically modified organisms. Recombinant DNA is commonly used in the context of plasmids: short circular DNA molecules with a few genes on them. In the process known as molecular cloning, researchers can amplify the DNA fragments by inserting plasmids into bacteria and then culturing them on plates of agar (to isolate clones of bacteria cells). ("Cloning" can also refer to the various means of creating cloned ("clonal") organisms.)

DNA can also be amplified using a procedure called the polymerase chain reaction (PCR).[90] By using specific short sequences of DNA, PCR can isolate and exponentially amplify a targeted region of DNA. Because it can amplify from extremely small amounts of DNA, PCR is also often used to detect the presence of specific DNA sequences.

DNA sequencing, one of the most fundamental technologies developed to study genetics, allows researchers to determine the sequence of nucleotides in DNA fragments. The technique of chain-termination sequencing, developed in 1977 by a team led by Frederick Sanger, is still routinely used to sequence DNA fragments.[91] Using this technology, researchers have been able to study the molecular sequences associated with many human diseases.

As sequencing has become less expensive, researchers have sequenced the genomes of many organisms, using a process called genome assembly, which utilizes computational tools to stitch together sequences from many different fragments.[92] These technologies were used to sequence the human genome in the Human Genome Project completed in 2003.[34] New high-throughput sequencing technologies are dramatically lowering the cost of DNA sequencing, with many researchers hoping to bring the cost of resequencing a human genome down to a thousand dollars.[93]

Next generation sequencing (or high-throughput sequencing) came about due to the ever-increasing demand for low-cost sequencing. These sequencing technologies allow the production of potentially millions of sequences concurrently.[94][95] The large amount of sequence data available has created the field of genomics, research that uses computational tools to search for and analyze patterns in the full genomes of organisms. Genomics can also be considered a subfield of bioinformatics, which uses computational approaches to analyze large sets of biological data. A common problem to these fields of research is how to manage and share data that deals with human subject and personally identifiable information. See also genomics data sharing.

On 19 March 2015, a leading group of biologists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[96][97][98][99] In April 2015, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[100][101]

Read more from the original source:
Genetics - Wikipedia

Cell biology – Wikipedia

Cell biology (formerly called cytology, from the Greek , kytos, "vessel") is a branch of biology that studies the different structures and functions of the cell and focuses mainly on the idea of the cell as the basic unit of life. Cell biology explains the structure, organization of the organelles they contain, their physiological properties, metabolic processes, signaling pathways, life cycle, and interactions with their environment. This is done both on a microscopic and molecular level as it encompasses prokaryotic cells and eukaryotic cells. Knowing the components of cells and how cells work is fundamental to all biological sciences; it is also essential for research in bio-medical fields such as cancer, and other diseases. Research in cell biology is closely related to genetics, biochemistry, molecular biology, immunology, and developmental biology.

The study of the cell is done on a molecular level; however, most of the processes within the cell are made up of a mixture of small organic molecules, inorganic ions, hormones, and water. Approximately 75-85% of the cells volume is due to water making it an indispensable solvent as a result of its polarity and structure.[1] These molecules within the cell, which operate as substrates, provide a suitable environment for the cell to carry out metabolic reactions and signalling. The cell shape varies among the different types of organisms, and are thus then classified into two categories: eukaryotes and prokaryotes. In the case of eukaryotic cells - which are made up of animal, plant, fungi, and protozoa cells - the shapes are generally round and spherical,[2] while for prokaryotic cells which are composed of bacteria and archaea - the shapes are: spherical (cocci), rods (bacillus), curved (vibrio), and spirals (spirochetes).[3]

Cell biology focuses more on the study of eukaryotic cells, and their signalling pathways, rather than on prokaryotes which is covered under microbiology. The main constituents of the general molecular composition of the cell includes: proteins and lipids which are either free flowing or membrane bound, along with different internal compartments known as organelles. This environment of the cell is made up of hydrophilic and hydrophobic regions which allows for the exchange of the above-mentioned molecules and ions. The hydrophilic regions of the cell are mainly on the inside and outside of the cell, while the hydrophobic regions are within the phospholipid bilayer of the cell membrane. The cell membrane consists of lipids and proteins which accounts for its hydrophobicity as a result of being non-polar substances.[1] Therefore, in order for these molecules to participate in reactions, within the cell, they need to be able to cross this membrane layer to get into the cell. They accomplish this process of gaining access to the cell via: osmotic pressure, diffusion, concentration gradients, and membrane channels. Inside of the cell are extensive internal sub-cellular membrane-bounded compartments called organelles.

cell surface membrane protects the cell

The growth process of the cell does not refer to the size of the cell, but instead the density of the number of cells present in the organism at a given time. Cell growth pertains to the increase in the number of cells present in an organism as it grows and develops; as the organism gets larger so too does the number of cells present. Cells are the foundation of all organisms, they are the fundamental unit of life. The growth and development of the cell are essential for the maintenance of the host, and survival of the organisms. For this process the cell goes through the steps of the cell cycle and development which involves cell growth, DNA replication, cell division, regeneration, specialization, and cell death. The cell cycle is divided into four distinct phases, G1, S, G2, and M. The G phases which is the cell growth phase - makes up approximately 95% of the cycle.[4] The proliferation of cells is instigated by progenitors, the cells then differentiate to become specialized, where specialized cells of the same type aggregate to form tissues, then organs and ultimately systems.[1] The G phases along with the S phase DNA replication, damage and repair - are considered to be the interphase portion of the cycle. While the M phase (mitosis and cytokinesis) is the cell division portion of the cycle.[4] The cell cycle is regulated by a series of signalling factors and complexes such as CDK's, kinases, and p53. to name a few. When the cell has completed its growth process, and if it is found to be damaged or altered it undergoes cell death, either by apoptosis or necrosis, to eliminate the threat it cause to the organisms survival.

Cells may be observed under the microscope, using several different techniques; these include optical microscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy, and confocal microscopy.

There are several different methods used in the study of cells:

Purification of cells and their parts Purification may be performed using the following methods:

Practical job applications for a degree in Cell Molecular Biology includes the following.[7]

Excerpt from:
Cell biology - Wikipedia

The Neuroscience Of Music | WIRED

Skip Article Header. Skip to: Start of Article.

Why does music make us feel? On the one hand, music is a purely abstract art form, devoid of language or explicit ideas. The stories it tells are all subtlety and subtext. And yet, even though music says little, it still manages to touch us deep, to tickle some universal nerves. When listening to our favorite songs,our body betrays all the symptoms of emotional arousal. The pupils in our eyes dilate, our pulse and blood pressure rise, the electrical conductance of our skin is lowered, and the cerebellum, a brain region associated with bodily movement, becomes strangely active. Blood is even re-directed to the muscles in our legs. (Some speculate that this is why we begin tapping our feet.) In other words,sound stirs us at our biological roots. As Schopenhauer wrote, It is we ourselves who are tortured by the strings.

We can now begin to understand where these feelings come from, why a mass of vibrating air hurtling through space can trigger such intense states of excitement. A brand new paper in Nature Neuroscience by a team of Montreal researchers marks an important step in revealing the precise underpinnings of the potent pleasurable stimulus that is music. Although the study involves plenty of fancy technology, including fMRI and ligand-based positron emission tomography (PET) scanning, the experiment itself was rather straightforward. After screening 217 individuals who responded to advertisements requesting people that experience chills to instrumental music, the scientists narrowed down the subject pool to ten. (These were the lucky few who most reliably got chills.) The scientists then asked the subjects to bring in their playlist of favorite songs virtually every genre was represented, from techno to tango and played them the music while their brain activity was monitored.

Because the scientists were combining methodologies (PET and fMRI) they were able to obtain an impressively precise portrait of music in the brain. The first thing they discovered (using ligand-based PET) is that music triggers the release of dopamine in both the dorsal and ventral striatum. This isnt particularly surprising: these regions have long been associated with the response to pleasurable stimuli.It doesnt matter if were having sex or snorting cocaine or listening to Kanye: These things fill us with bliss because they tickle these cells. Happiness begins here.

The more interesting finding emerged from a close study of the timing of this response, as the scientists looked to see what was happening in the seconds before the subjects got the chills. I wont go into the precise neural correlates lets just say that you should thank your right NAcc the next time you listen to your favorite song but want to instead focus on an interesting distinction observed in the experiment:

In essence, the scientists found that our favorite moments in the music were preceeded by a prolonged increase of activity in the caudate. They call this the anticipatory phase and argue that the purpose of this activity is to help us predict the arrival of our favorite part:

Immediately before the climax of emotional responses there was evidence for relatively greater dopamine activity in the caudate. This subregion of the striatum is interconnected with sensory, motor and associative regions of the brain and has been typically implicated in learning of stimulus-response associations and in mediating the reinforcing qualities of rewarding stimuli such as food.

In other words, the abstract pitches have become a primal reward cue, the cultural equivalent of a bell that makes us drool. Here is their summary:

The anticipatory phase, set off by temporal cues signaling that a potentially pleasurable auditory sequence is coming, can trigger expectations of euphoric emotional states and create a sense of wanting and reward prediction. This reward is entirely abstract and may involve such factors as suspended expectations and a sense of resolution. Indeed, composers and performers frequently take advantage of such phenomena, and manipulate emotional arousal by violating expectations in certain ways or by delaying the predicted outcome (for example, by inserting unexpected notes or slowing tempo) before the resolution to heighten the motivation for completion. The peak emotional response evoked by hearing the desired sequence would represent the consummatory or liking phase, representing fulfilled expectations and accurate reward prediction. We propose that each of these phases may involve dopamine release, but in different subcircuits of the striatum, which have different connectivity and functional roles.

The question, of course, is what all these dopamine neurons are up to. What aspects of music are they responding to? And why are they so active fifteen seconds before the acoustic climax? After all, we typically associate surges of dopamine with pleasure, with the processing of actual rewards. And yet, this cluster of cells in the caudate is most active when the chills have yet to arrive, when the melodic pattern is still unresolved.

One way to answer these questions is to zoom out, to look at the music and not the neuron. While music can often seem (at least to the outsider) like a labyrinth of intricate patterns its art at its most mathematical it turns out that the most important part of every song or symphony is when the patterns break down, when the sound becomes unpredictable. If the music is too obvious, it is annoyingly boring, like an alarm clock. (Numerous studies, after all, have demonstrated that dopamine neurons quickly adapt to predictable rewards. If we know whats going to happen next, then we dont get excited.)This is why composers introduce the tonic note in the beginning of the song and then studiously avoid it until the end. The longer we are denied the pattern we expect, the greater the emotional release when the pattern returns, safe and sound. That is when we get the chills.

To demonstrate this psychological principle, the musicologist Leonard Meyer, in his classic book Emotion and Meaning in Music (1956), analyzed the 5th movement of Beethovens String Quartet in C-sharp minor, Op. 131. Meyer wanted to show how music is defined by its flirtation with but not submission to our expectations of order.To prove his point, Meyer dissected fifty measures of Beethovens masterpiece, showing how Beethoven begins with the clear statement of a rhythmic and harmonic pattern and then, in an intricate tonal dance, carefully avoids repeating it. What Beethoven does instead is suggest variations of the pattern. He is its evasive shadow. If E major is the tonic, Beethoven will play incomplete versions of the E major chord, always careful to avoid its straight expression. He wants to preserve an element of uncertainty in his music, making our brains beg for the one chord he refuses to give us. Beethoven saves that chord for the end.

According to Meyer, it is the suspenseful tension of music (arising out of our unfulfilled expectations) that is the source of the musics feeling. While earlier theories of music focused on the way a noise can refer to the real world of images and experiences (its connotative meaning), Meyer argued that the emotions we find in music come from the unfolding events of the music itself. This embodied meaning arises from the patterns the symphony invokes and then ignores, from the ambiguity it creates inside its own form. For the human mind, Meyer writes, such states of doubt and confusion are abhorrent. When confronted with them, the mind attempts to resolve them into clarity and certainty.And so we wait, expectantly, for the resolution of E major, for Beethovens established pattern to be completed. This nervous anticipation, says Meyer, is the whole raison detre of the passage, for its purpose is precisely to delay the cadence in the tonic.The uncertainty makes the feeling it is what triggers that surge of dopamine in the caudate, as we struggle to figure out what will happen next. And so our neurons search for the undulating order, trying to make sense of this flurry of pitches. We can predict some of the notes, but we cant predict them all, and that is what keeps us listening, waiting expectantly for our reward, for the errant pattern to be completed. Music is a form whose meaning depends upon its violation.

Homepage image: Kashirin Nickolai, Flickr.

Read the original:
The Neuroscience Of Music | WIRED