BRIEF-Seattle Genetics reports 8.2 percent stake in Immunomedics as of June 29, 2017 – Reuters

UPDATE 1-Tesla April registrations drop in key California market

SAN FRANCISCO, July 6 Registrations of Tesla Inc vehicles in California, by far the largest market of the luxury electric car maker, fell 24 percent in April from a year ago, according to data from IHS Markit.

More:
BRIEF-Seattle Genetics reports 8.2 percent stake in Immunomedics as of June 29, 2017 - Reuters

Kent State chemistry department and patent-holding professor dies – Kent Wired

Students and faculty of the chemistry and biochemistry department at Kent State are grieving the death of researcher and professor Anatoly Khitrin.

Khitrin, 62, passed away due to cancer and heart related problems earlier this week.

Calling hours for Khitrin begin Sunday from 2 p.m. to 4 p.m., followed by a service until 5 p.m. at Bissler Funeral Home in Kent.

Khitrins coworkers said it was a pleasure to work with him.

I worked with him for 15 years, and he was such a wonderful man, said Erin Michael-McLaughlin, the chemistry department program coordinator. He had a very dry sense of humor and was one of the most intelligent men I have ever met.

Songping Huang, a chemistry and biochemistry professor, said he worked very closely with Khitrin and cherished the relationship they had.

I remember he once told me this story as to why he shouldnt quit smoking, and it was very funny, Huang said. It was a spanish man decided when he was 113 to stop smoking because he was getting old, and he died two years later. This is why Anatoly wouldnt quit; He was very optimistic and funny.

Huang and Khitrin also hold two patents that Kent State is recognized for.

He was a very smart scientist, and one day I told him of this realization I had with Prussian blue pigment, Huang said. He and I tested this pigment to be used in MRIs instead of toxic metal Gadolinium, and we proved that it worked. Now we share a patent over this discovery.

Robert Twieg, a chemistry and biochemistry professor, knew Khitrin the entire time he worked for Kent State and said he was a friendly and intelligent man.

Khitrin was an expert on nuclear magnetic resonance spectroscopy, Twieg said. People may argue that he was the smartest man in the chemistry department. He understood the quantum universe better than anyone employed in our department. His intelligence and kindness will be missed.

Holli Phillips is the health and wellness reporter. Contact her at hphill10@kent.edu.

Visit link:
Kent State chemistry department and patent-holding professor dies - Kent Wired

University Of Tulsa Partners With Marshall Brewing Company – News On 6

TULSA, Oklahoma -

When you think of beer, you don't usually associate it with labs, books and lots of studying,but the University of Tulsa is looking to change just that.

The school is partnering with Marshall brewing company.

TU and Marshall Brewing Company are teaming up to offer a beer brewing certificate program all in the name of science.

Jeremy Sabo is an intern at Marshall Brewing.

He received his bachelor's degree in Biochemistry from TU.

He is also helping set up a unique program at TU, a beer brewing certificate program in a partnership with Marshall Brewing.

"We'll have, basically six classes, so three of those are already offered in the chemistry and biochemistry department," Sabo said.

Sabo says his curiosity is what drives his love of science and beer.

He says the changing laws surrounding alcohol in the state got the ball rolling.

The idea was proposed by a TU professor.

"So you'll get the history, you'll get, how beer's brewed and why it's important, and all of the lab techniques that go along with quality control and quality assurance," Sabo said.

Sabo even took us over to a lab at TU, showing us some of the science behind the beer.

"There's calories, proteins, carbohydrates, and all those need to be determined and those are done through scientific instrumentation and someone needs to know how to operate those," Sabo said.

He says the great part about this program is that anyone age 21 and older can take it, giving them hands-on experience, while also creating many opportunities.

"For the breweries that are going to be expanding, to both have students and then for students that want a job, and may don't wanna go work for a big company and go work in beer," Sabo said.

That certificate program is set to begin in the spring of 2018.

Excerpt from:
University Of Tulsa Partners With Marshall Brewing Company - News On 6

Researchers develop tumor-targeting MRI contrast based on human … – Phys.Org

July 7, 2017 by Megan Bard Gang Han, PhD, associate professor of biochemistry & molecular pharmacology at University of Massachusetts Medical School. Credit: UMass Medical School

A team led by Gang Han, PhD, has designed a human protein-based, tumor-targeting Magnetic Resonance Imaging (MRI) contrast that can be easily cleared by the body. The discovery holds promise for clinical application, including early stage tumor detection because of the enhanced MRI contrast, according to Dr. Han, associate professor of biochemistry & molecular pharmacology at University of Massachusetts Medical School.

MRI is one of the most widely used, noninvasive and versatile imaging tools for clinical detection, staging and monitoring of malignancy, without the need for ionizing radiation or harmful radionuclides.

The most frequently employed contrast agents used in MRI are gadolinium (Gd)-based, since they do not provoke an immune response in cells. However, such compounds require high doses of intravenous administration and are retained in the body's organs.

In the search for alternative, Han and colleagues focused on proteins, which are naturally occurring nanomaterials. For example, the protein-bound nanoparticle Abraxane can be used to treat metastatic breast cancer. In the same way, protein scaffolds that encapsulate metal-based nanoparticulate contrast agents also appear to enhance the effectiveness of contrast agents.

In a paper published June 26 in Nano Letters, ACS Publications, Han and colleagues outlined how human transferrin (Tf) proteins can be used to create an MRI contrast nanoprobe by mimicking the natural process to form special nanoparticles called gadolinium biomineralized human transferrin protein-based nanoparticles or Gd@TfNP.

"The Gd@TfNPs preserve the functions of Tf very well, possess superior chemical and physical properties, and are brighter compared to the Gd-based agents currently in use," Han said, adding that the nanoparticles could also be used as tumor-targeting and systematically clearable contrast agents for MR detection of early-stage tumors.

"Such probes can immediately leave the tumor sites after delivery and we could track the overall process by MRI. Such a technique might be useful not only for visualizing tumor therapies, but for optimizing drug dose and evaluating clinical results," said Yang Zhao, MD, PhD, of the Second Hospital of Tianjin Medical University and the paper's first author.

Explore further: Better contrast agents based on nanoparticles

More information: Yang Zhao et al, Tumor-Targeted and Clearable Human Protein-Based MRI Nanoprobes, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b00828

Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than the ...

Researchers from PSG College of Technology, India have developed nano-contrast agents for magnetic resonance imaging (MRI) as well as optical imaging of cancer cells. This report will appear in the forthcoming issue of the ...

Scientists from the National University of Singapore (NUS) have developed a novel nanodiamond-based contrast agenta chemical "dye" used to enhance the visibility of internal body structures in magnetic resonance imaging ...

Imaging probes that specifically target tumors can provide more sensitive and relevant information about the tumor compared to conventional, non-specific probes. Additionally, targeted probes can improve tumor detection, ...

Being able to view tumor blood vessels without surgery or potent dyes can improve our understanding of the environment in which a tumor grows. Now, a team of researchers, including Chang-Tong Yang from the A*STAR Singapore ...

Gadolinium, one of the rare earth elements, is used as a contrast agent that enhances the quality of MRI examinations of internal organs and tissues. Researchers from Charit - Universittsmedizin Berlin (NeuroCure Clinical ...

In today's increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk.

A team led by Gang Han, PhD, has designed a human protein-based, tumor-targeting Magnetic Resonance Imaging (MRI) contrast that can be easily cleared by the body. The discovery holds promise for clinical application, including ...

AMOLF researchers have developed nanoscale strings whose motion can be converted to light signals with unprecedented strength. This could allow for extremely precise sensors and comes with an important side effect. "Analogous ...

Scientists have created new 2-D nanostructured surfaces which appear as realistic 3-D objects including shading and shadows - using cutting edge nano-engineering.

One afternoon, Carnegie Mellon University Materials Science and Engineering (MSE)'s Mohammad Islam walked into colleague Paul Salvador's office and asked what the biggest problem was in photocatalysis that he'd like to be ...

As embedded intelligence is finding its way into ever more areas of our lives, fields ranging from autonomous driving to personalized medicine are generating huge amounts of data. But just as the flood of data is reaching ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

More here:
Researchers develop tumor-targeting MRI contrast based on human ... - Phys.Org

Biology of single cells shines a light on collaboration – Nature.com

Roy Kaltschmidt/LBNL (CC BY-NC-ND 2.0)

Research on single cells could help to explain disease progression.

The street-light effect is often used as a criticism in science, because it introduces an observation bias. The concept is based on the old joke about the night-time drunk who looks for his house keys under the light, even though he lost them somewhere else, because thats the only place he can examine.

But if nothing is lost and a street light shines scientific light on a new place, then it would be perverse not to peer underneath. Because thats one of the attractive features of science: discovery and the joy of the unknown. So it is difficult to criticize those scientists who rush to exploit new tools that allow the analysis of single cells. As we describe in a special series of articles this week, advances in the past few years at this technical and computational frontier offer an unprecedented view of what goes on at the cellular level, with implications for everything from genomics and ageing to the treatment of disease.

Some of this science is descriptive and discovery-led. Its nearly 180 years since the cell was first proposed as the most basic individual unit of all life on Earth. Yet most of what we know about how cells work at the molecular and biochemical level comes from studying them not as individuals but as groups. This is problematic: researchers know that tissues, and even apparently homogeneous collections of identical cells, can carry significant differences. These ups and downs are missed when cells are mashed together and assessed. Its a classic downside of the tyranny of the average. But that was where the light was, so thats where scientists looked. And now the unexplored territory inside the cell is ripe for adventure.

As the street light of science starts to focus on individual cells and individual characteristics, so it also becomes a spotlight. For the study of the single cell is not just the territory of discovery it also enables problem-based research. Take cancer. We know that tumours comprise a multitude of vastly different cells, not all of them explicitly cancerous (think of blood and lymph vessels and immune cells). To unravel the ways in which they interact and either fight or maintain tumours has been a major challenge. One way of addressing that is to get more data on all the players, and to extract information from cancer cells about how they developed and what weaknesses they may harbour. And that takes single-cell analysis.

The illumination of this biology of individual cells also shines a light on some interesting cultural differences. To explore this new frontier demands new skills, and so mathematicians and computer scientists are teaming up with cell biologists, developmental biologists and the various systems specialists: immunologists, neuroscientists and others. As they do so, they are bringing with them the more collaborative and open approach seen in their native disciplines. As a result, and unusually for a dynamic and fast-moving field in the life sciences, single-cell biology has seen data, tools and results being shared more readily before publication.

This is hugely positive, and is perhaps a benefit of the otherwise-maligned street-light approach to science. The better the search tools, and the more that scientists work together to improve them, the greater the chance of everyone striking lucky. When the goals and rewards of science are less clear, then perhaps the benefits of cooperation outweigh the risks.

It will be instructive to see whether this interdisciplinary ethos continues, and whether it spreads to other subfields as the impact of big data forces biologists to rethink their approaches and broaden the expertise in their groups and laboratories. One indication might be the open submission and sharing or not of the computer code used to crunch the data presented in journal papers. As this publication pointed out in 2014, the delivery of such code from scientists lags behind that of other forms of data (Nature 514, 536; 2014). The lack of standardization makes it difficult to mandate open sharing of code, but scientists shouldnt use this as an excuse to keep it to themselves.

One sign of how far the field of single-cell analysis has come is that it has its own ambitious some say too ambitious mega-project. The Human Cell Atlas aims to identify the number of cell types and cell states that comprise a person. That ambition, of course, raises a similar question about the street-light effect. People are as individual as cells, so what if a map of cells in one human says little about the cells representation in other humans? At some point were going to have to spread the light around. The effect could be blinding. Or it could be dazzling.

See the original post here:
Biology of single cells shines a light on collaboration - Nature.com

How to build a human cell atlas : Nature News & Comment – Nature.com

Casey Atkins for Nature

Aviv Regev likes to work at the edge of what is possible. In 2011, the computational biologist was collaborating with molecular geneticist Joshua Levin to test a handful of methods for sequencing RNA. The scientists were aiming to push the technologies to the brink of failure and see which performed the best. They processed samples with degraded RNA or vanishingly small amounts of the molecule. Eventually, Levin pointed out that they were sequencing less RNA than appears in a single cell.

To Regev, that sounded like an opportunity. The cell is the basic unit of life and she had long been looking for ways to explore how complex networks of genes operate in individual cells, how those networks can differ and, ultimately, how diverse cell populations work together. The answers to such questions would reveal, in essence, how complex organisms such as humans are built. So, we're like, 'OK, time to give it a try', she says. Regev and Levin, who both work at the Broad Institute of MIT and Harvard in Cambridge, Massachusetts, sequenced the RNA of 18 seemingly identical immune cells from mouse bone marrow, and found that some produced starkly different patterns of gene expression from the rest1. They were acting like two different cell subtypes.

That made Regev want to push even further: to use single-cell sequencing to understand how many different cell types there are in the human body, where they reside and what they do. Her lab has gone from looking at 18 cells at a time to sequencing RNA from hundreds of thousands and combining single-cell analyses with genome editing to see what happens when key regulatory genes are shut down.

The results are already widening the spectrum of known cell types identifying, for example, two new forms of retinal neuron2 and Regev is eager to find more. In late 2016, she helped to launch the International Human Cell Atlas, an ambitious effort to classify and map all of the estimated 37 trillion cells in the human body (see 'To build an atlas'). It is part of a growing interest in characterizing individual cells in many different ways, says Mathias Uhln, a microbiologist at the Royal Institute of Technology in Stockholm: I actually think it's one of the most important life-science projects in history, probably more important than the human genome.

Such broad involvement in ambitious projects is the norm for Regev, says Dana Pe'er, a computational biologist at Memorial Sloan Kettering Cancer Center in New York City, who has known Regev for 18 years. One of the things that makes Aviv special is her enormous bandwidth. I've never met a scientist who thinks so deeply and so innovatively on so many things.

When Regev was an undergraduate at Tel Aviv University in Israel, students had to pick a subject before beginning their studies. But she didn't want to decide. Too many things were interesting, she says. Instead, she chose an advanced interdisciplinary programme that would let her look at lots of subjects and skip a bachelor's degree, going straight to a master's.

A turning point in her undergraduate years came under the tutelage of evolutionary biologist Eva Jablonka. Jablonka has pushed a controversial view of evolution that involves epigenetic inheritance, and Regev says she admired her courage and integrity in the face of criticism. There are many easy paths that you can take, and it's always impressive to see people who choose alternative roads.

Jablonka's class involved solving complicated genetics problems, which Regev loved. She was drawn to the way in which genetics relies on abstract reasoning to reach fundamental scientific conclusions. I got hooked on biology very deeply as a result, she says. Genes became fascinating, but more so how they work with each other. And the first vehicle in which they work with each other is the cell.

Regev did a PhD in computational biology under Ehud Shapiro from the Weizmann Institute of Science in Rehovot, Israel. In 2003 she moved to Harvard University's Bauer Center for Genomics Research in Cambridge, through a unique programme that allows researchers to leapfrog the traditional postdoctoral fellowship and start their own lab. I had my own small group and was completely independent, she says. That allowed her to define her own research questions, and she focused on picking apart genetic networks by looking at the RNA molecules produced by genes in cells. In 2004, she applied this technique to tumours and found gene-expression patterns that were shared across wildly different types of cancer, as well as some that were more specific, such as a group of genes related to growth inhibition that is suppressed in acute lymphoblastic leukaemias3. By 2006, at the age of 35, she had established her lab at the Broad Institute and the Massachusetts Institute of Technology in Cambridge.

At Broad, Regev continued working on how to tease complex information out of RNA sequencing data. In 2009, she published a paper on a type of mouse immune cell called dendritic cells, revealing the gene networks that control how they respond to pathogens4. In 2011, she developed a method that could assemble a complete transcriptome5 all the RNA being transcribed from the genes in a sample without using a reference genome, important when an organism's genome has not been sequenced in any great depth.

It was around this time that Levin mentioned the prospect of sequencing the RNA inside a single cell. Up to that point, single-cell genomics had been almost impossible, because techniques weren't sensitive enough to detect the tiny amount of RNA or DNA inside just one cell. But that began to change around 2011.

The study with the 18 immune cells also dendritic cells was meant to test the method. I had kind of insisted that we do an experiment to prove that when we put the same cell types in, everything comes out the same, says Rahul Satija, Regev's postdoc at the time, who is now at the New York Genome Center in New York City. Instead, he found two very different groups of cell subtypes. Even within one of the groups, individual cells varied surprisingly in their expression of regulatory and immune genes. We saw so much in this one little snapshot, Regev recalls.

I think even right then, Aviv knew, says Satija. When we saw those results, they pointed the way forward to where all this was going to go. They could use the diversity revealed by single-cell genomics to uncover the true range of cell types in an organism, and find out how they were interacting with each other.

In standard genetic sequencing, DNA or RNA is extracted from a blend of many cells to produce an average read-out for the entire population. Regev compares this approach to a fruit smoothie. The colour and taste hint at what is in it, but a single blueberry, or even a dozen, can be easily masked by a carton of strawberries.

Reporter Shamini Bundell finds out what can be learned from studying cells one by one.

You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.

By contrast, single-cell-resolved data is like a fruit salad, Regev says. You can distinguish your blueberries from your blackberries from your raspberries from your pineapples and so on. That promised to expose a range of overlooked cellular variation. Using single-cell genomics to sequence a tumour, biologists could determine which genes were being expressed by malignant cells, which by non-malignant cells and which by blood vessels or immune cells potentially pointing to better ways to attack the cancer.

The technique holds promise for drug development in many diseases. Knowing which genes a potential drug affects is more useful if there's a way to comprehensively check which cells are actively expressing the gene.

Regev was not the only one becoming enamoured with single-cell analyses on a grand scale. Since at least 2012, scientists have been toying with the idea of mapping all human cell types using these techniques. The idea independently arose in several areas of the world at the same time, says Stephen Quake, a bioengineer at Stanford University in California who co-leads the Chan Zuckerberg Biohub. The Biohub, which has been funding various biomedical research projects since September 2016, includes its own cell-atlas project.

Around 2014, Regev started giving talks and workshops on cell mapping. Sarah Teichmann, head of cellular genetics at the Wellcome Trust Sanger Institute in Hinxton, UK, heard about Regev's interest and last year asked her whether she would like to collaborate on building an international human cell atlas project. It would include not just genomics researchers, but also experts in the physiology of various tissues and organ systems.

I would get stressed out of this world, but she doesn't.

Regev leapt at the chance, and she and Teichmann are now co-leaders of the Human Cell Atlas. The idea is to sequence the RNA of every kind of cell in the body, to use those gene-expression profiles to classify cells into types and identify new ones, and to map how all those cells and their molecules are spatially organized.

The project also aims to discover and characterize all the possible cell states in the human body mature and immature, exhausted and fully functioning which will require much more sequencing. Scientists have assumed that there are about 300 major cell types, but Regev suspects that there are many more states and subtypes to explore. The retina alone seems to contain more than 100 subtypes of neuron, Regev says. Currently, consortium members whose labs are already working on immune cells, liver and tumours are coming together to coordinate efforts on these tissues and organs. This is really early days, says Teichmann.

In co-coordinating the Human Cell Atlas project, Regev has wrangled a committee of 28 people from 5 continents and helped to organize meetings for more than 500 scientists. I would get stressed out of this world, but she doesn't, Jablonka says. It's fun to have a vision that's shared with others, Regev says, simply.

It has been unclear how the project would find funding for all its ambitions. But in June, the Chan Zuckerberg Initiative the philanthropic organization in Palo Alto, California, that funds the Biohub contributed an undisclosed amount of money and software-engineering support to the Human Cell Atlas data platform, which will be used to store, analyse and browse project data. Teichmann sees the need for data curation as a key reason to focus on a large, centralized effort instead of many smaller ones. The computational part is at the heart of the project, she says. Uniform data processing, data browsing and so on: that's a clear benefit.

In April, the Chan Zuckerberg Initiative had also accepted applications for one-year pilot projects to test and develop technologies and experimental procedures for the Human Cell Atlas; it is expected to announce which projects it has selected for funding some time soon. The applications were open to everyone, not just scientists who have participated in planning meetings.

Some scientists worry that the atlas will drain both funding and effort from other creative endeavours a critique aimed at many such international big-science projects. There's this tension, says Atray Dixit, a PhD student in Regev's lab. We know they're going to give us something, and they're kind of low-risk in that sense. But they're really expensive. How do we balance that?

Developmental biologist Azim Surani at the University of Cambridge, UK, is not sure that the project will adeptly balance quantity and depth of information. With the Human Cell Atlas, you would have a broad picture rather than a deeper understanding of what the different cell types are and the relationships between them, he says. What is the pain-to-gain ratio here?

Surani also wonders whether single-cell genomics is ready to converge on one big project. Has the technology reached maturity so that you're making the best use of it? he asks. For example, tissue desegregation extracting single cells from tissue without getting a biased sample or damaging the RNA inside is still very difficult, and it might be better for the field, some say, if many groups were to go off in their own directions to find the best solution to this and other technical challenges.

And there are concerns that the project is practically limitless in scope. The definition of a cell type is not very clear, says Uhln, who is director of the Human Protein Atlas an effort to catalogue proteins in normal and cancerous human cells that has been running since 2003. There may be a nearly infinite number of cell types to characterize. Uhln says that the Human Cell Atlas is important and exciting, but adds: We need to be very clear, what is the endpoint?

Regev argues that completion is not the only goal. It's modular: you can break this to pieces, she says. Even if you solve a part of a problem, it's still a meaningful solution. Even if the project just catalogues all the cells in the retina, for example, that's still useful for drug development, she argues. It lends itself to something that can unfold over time.

Regev's focus on the Human Cell Atlas has not distracted her from her more detailed studies of specific cell types. Last December, her group was one of three to publish papers6, 7, 8 in which they used the precision gene-editing tool CRISPRCas9 to turn off transcription factors and other regulatory genes in large batches of cells, and then used single-cell RNA sequencing to observe the effects. Regev's lab calls its technique Perturb-seq6.

The aim is to unpick genetic pathways very precisely, on a much larger scale than has been possible before, by switching off one or more genes in each cell, then assaying how they influence every other gene. This was possible before, for a handful of genes at a time, but Perturb-seq can work on 1,000 or even 10,000 genes at once. The results can reveal how genes regulate each other; they can also show the combined effects of activating or deactivating multiple genes at once, which can't be predicted from each of the genes alone.

Dixit, a co-first author on the paper, says Regev is indefatigable. She held daily project meetings at 6 a.m. in the weeks leading up to the submission. I put in this joke sentence at the end of the supplementary methods a bunch of alliteration just to see if anyone would read that far. She found it, Dixit says. It was 3 a.m. the night before we submitted.

Regev's intensity and focus is accompanied by relentless positivity. I'm one of the fortunate people who love what they do, she says. And she still loves cells. No matter how you look at them, they're just absolutely amazing things.

Read more:
How to build a human cell atlas : Nature News & Comment - Nature.com

Optics of soap bubbles – Scientist Live

Scientists at the University of St Andrews have developed an advanced new microscopy technique that could revolutionise our understanding of how immune and cancer cells find their way through the body.

Elastic Resonator Interference Stress Microscopy (ERISM) images the extremely weak mechanical forces that living cells apply when they move, divide, and probe their environment.

As described in Nature Cell Biology today (Monday 19 June 2017), ERISM resolves the tiny forces applied by feet-like structures on the surface of human immune cells.

These feet allow immune cells to find the fastest route to a site of infection in the body.

Similar structures may be responsible for the invasion of cancer cells into healthy tissue and it is planned to use ERISM in the future to learn more about the mechanisms involved in cancer spreading.

The physical effect giving soap bubbles their rainbow-like appearance is a phenomenon called thin-film interference. It is based on interaction of light reflected on either side of a soap film.

The different colours that white light consists of interact with different local thicknesses of the thin film and generate the familiar rainbow patterns.

Effectively the colours are an image of the film thickness at each point on the surface of the soap bubble.

A similar effect can be used to determine the forces exerted by cells. Professor Malte Gather of the School of Physics and Astronomy at St Andrews explained: Our microscope records very high colour resolution images of the light reflected by a thin and soft probe. From these images, we then create a highly accurate map of the thickness of the probe with a mind-blowing precision of one-billionth part of a metre.

If cells apply forces to the probe, the probe thickness changes locally, thus providing information about the position and magnitude of the applied forces.

Although researchers have recorded forces applied by cells before, our interference-based approach gives an unprecedented resolution and in addition provides an internal reference that makes our technique extremely robust and relatively easy to use.

This robustness means that measuring cell forces could soon become a tool in clinical diagnostics. For example, doctors may find that the ERISM method can complement existing techniques to assess the invasiveness of cancer. Work to scale up ERISM for use in the clinic is now under way.

Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopyby Nils M Kronenberg, Philipp Liehm, Anja Steude, Johanna A Knipper, Jessica G Borger, Giuliano Scarcelli, Kristian Franze, Simon J Powis and Malte C Gather is published on Nature Cell Biologys website. The DOI for this paper is 10.1038/ncb3561.

Link:
Optics of soap bubbles - Scientist Live

Is sense of smell linked to being fatter or thinner? – CBS News

Would you be willing to give up the smell of fresh-baked chocolate chip cookies or a pizza right out of the oven if it meant slimming down?

A new study showed that mice that lost their sense of smell didn't gain weight even when they ate the same high-fat diet as mice that could smell and did gain weight.

The mice that retained their sense of smell packed on twice their normal weightwhile the smell-deficient mice didn't gain at all, scientists from the University of California, Berkeley, reported in the journal Cell Metabolism.

A group of mice whose olfactory neurons had been genetically altered to take away their sense of smell were also compared with another group of mice whose sense of smell had been enhanced. The "super-smellers" gained even more weight.

Two mice on the same high-fat diet are shown in the photo. The mouse on the top grew plump but the mouse on the bottom, whose sense of smell was blocked by UC Berkeley researchers, stayed a normal weight.

Andrew Dillin and Celine Riera, UC Berkeley

"This paper is one of the first studies that really shows if we manipulate olfactory inputs, we can actually alter how the brain perceives energy balance, and how the brain regulates energy balance," said study author Cline Riera.

The findings raise questions about whether or not the same would hold true for humans, Riera, a former UC Berkeley postdoctoral fellow now an assistant professor at Cedars-Sinai Medical Center in Los Angeles, told CBS News.

"The cool thing about olfactory nerves is that they are totally unique. They're not in brain, they're in the nose. Maybe in future, we can non-invasively block them in humans. Maybe if you can remove olfaction in the patients for several months, it may help them lose weight," she said.

In an article in Berkeley News, senior study author Andrew Dillin said, "Sensory systems play a role in metabolism. Weight gain isn't purely a measure of the calories taken in; it's also related to how those calories are perceived."

The researchers hope future work in this area could someday benefit patients who are morbidly obese or overweight people with health problems like diabetes.

Dillin, a professor of molecular and cell biology and Howard Hughes Medical Institute investigator, said that if the discovery proves true in humans as well as mice, it could offer new treatment options for obese patients thinking about stomach stapling or bariatric surgery. "For that small group of people, you could wipe out their smell for maybe six months and then let the olfactory neurons grow back, after they've got their metabolic program rewired," he suggested.

Those with food addictions, such as binge-eating disorders, might be helped, too.

Riera said, "We hope to eventually find a way to do that in humans as well, and help them control their addictive behaviors and switch their metabolism to fat burning instead of fat storage."

2017 CBS Interactive Inc. All Rights Reserved.

Read this article:
Is sense of smell linked to being fatter or thinner? - CBS News

‘Liquid scaffolding’: Watery droplets form structures inside cells – Princeton University

A research team led by Princeton engineers has revealed in remarkable new detail how liquid droplets can develop structure amidst the soup of material found inside a living cell. These droplets, known as membraneless organelles, play critical roles in cellular function and diseases.

The team, a mix of biologists and materials scientists, has shown that surprisingly low concentrations of proteins can readily condense into a droplet that has internal structure, yet is very dilute, consisting mostly of empty, watery space. This liquid scaffolding lets molecules only of certain sizes easily diffuse in and out of the structure, enabling them to perform their vital tasks.

The new insights into the molecular organization inside membraneless organelles will help clarify their contributions to health and when that organization breaks down to certain diseases.

In this study, we have measured important aspects of the protein-to-protein interactions that drive the form and function of a membraneless organelle, said Ming-Tzo Wei, a postdoctoral research associate in the Department of Chemical and Biological Engineering and lead author of the study published June 26 in the journal Nature Chemistry.

Were really starting to understand the molecular-level organization within this membraneless class of cellular structures, saidClifford Brangwynne, an assistant professor ofchemical and biological engineering, senior author of the paper and principal investigator of the Soft Living Matter Group.

At left: Membraneless organelles, called P granules, are shown in green around a cell's nucleus in a flatworm embryo. Middle: A zoom-in of the liquid-like organelles. At right: An artist's impression of a tighter zoom into the P granule, revealing its structure that it is permeable to molecules only of certain sizes, shown in red.

Image courtesy of the researchers

The team collaborated with Rohit Pappu, a biomedical engineer at Washington University in St. Louis, and also includedRodney Priestley, associate professor of chemical and biological engineering, andCraig Arnold, director of thePrinceton Institute for the Science and Technology of Materials.

The researchers focused on a protein type, LAF-1, that joins with other proteins and RNA to form a globular, membraneless organelle called a P granule. In a popularly studied roundworm,Caenorhabditis elegans, the P granules keep the worms sex cells in a prepared state for reproduction.

A set of experiments sought to determine the concentration of LAF-1 inside of a P granule versus the levels of the protein otherwise floating freely within the cell. Knowing the difference would tell the researchers what concentration of the protein is needed to form the structure. A novel technique, called ultrafast-scanning fluorescence correlation spectroscopy, proved critical to the task.

Developed in collaboration with paper co-author Arnold, who also is a professor of mechanical and aerospace engineering, the technique uses a special lens to reduce uncertainty about the size of a volume being scanned by a microscope. As a result, the concentration of proteins fitted with fluorescent tags can be accurately determined in a given space, for instance within a P granule.

Wei took a series of such measurements, along with co-first author Shana Elbaum-Garfinkle, also a postdoctoral research associate in the Department of Chemical and Biological Engineering. In addition, the researchers tracked the motions of molecules in the P granule and observed how interactions with RNA reduced the protein concentration, in effect lowering the granules fluid consistency, or viscosity.

For further insight, the researchers turned to the science of polymers, which are substances composed of many similar, smaller units, like those found in consumer plastic products. LAF-1 is a disordered protein, and can be thought of as a flexible polymer chain. The polymeric nature of LAF-1 allows it to form a scaffold-like network within the droplet. However, unlike with plastics, the teams results indicated that the mesh size, or average size of the gaps between units, is relatively large, three to eight nanometers (billionths of a meter). Molecules larger than this span cannot move throughout the droplet. This result places limits on the kinds of material that the membraneless organelle can interact with inside of a cell, shedding light on its function.

The findings were further validated by a series of computer simulations run by computational biophysicist and co-first author Alex Holehouse, a graduate student working closely with his adviser Pappu of Washington University in St. Louis.

We were able to basically swim inside the organelles to determine how much room is actually available," Pappu said in a news story published by Washington University. "While we expected to see a crowded swimming pool, we found one with plenty of room, and water. Were starting to realize that these droplets are not all going to be the same.

Pappu added that the implications for the work are broad. It is essential to be able to understand how one can regulate the functions of these droplets, Pappu said. If we succeed, the impact could be transformative: its not just cancer, its neurodegeneration, about developmental disorders, and even the fundamentals of cell biology.

The advance required the melding of multiple perspectives and expertise, Brangwynne said.

This study represents a unique collaboration between soft matter and polymer physics, mechanical engineering, computational physics and biology, said Brangwynne. Working together in this way has given us all a real sense of triumph in having helped move science forward.

Additional authors on the paper include Carlos Chih-Hsiung Chen, a research specialist in the Department of Chemical and Biological Engineering, and Marina Feric, formerly of Princeton and now a postdoctoral fellow at the National Institutes of Health. The work was supported by the Princeton Center for Complex Materials, the National Science Foundation, the National Institutes of Health and the Eric and Wendy Schmidt Transformative Technology Fund.

More:
'Liquid scaffolding': Watery droplets form structures inside cells - Princeton University

Molecular Genetics – Genetics Conferences

Sessions/Tracks

Track 1:Molecular Biology

Molecular biologyis the study of molecular underpinnings of the processes ofreplication,transcription,translation, and cell function. Molecular biology concerns themolecularbasis ofbiologicalactivity between thebiomoleculesin various systems of acell,gene sequencingand this includes the interactions between theDNA,RNAand proteinsand theirbiosynthesis. Inmolecular biologythe researchers use specific techniques native to molecular biology, increasingly combine these techniques and ideas from thegeneticsandbiochemistry.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, Canada; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk; 6th International Conference and Exhibition onCellandGene Therapy, Mar 27-28, 2017 Madrid, Spain; Gordon Research Conference,Viruses&Cells, 14 - 19 May 2017, Lucca, Italy;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain; Embl Conference:Mammalian GeneticsAndGenomics:From Molecular Mechanisms To Translational Applications, Heidelberg, Germany, October 24, 2017;GeneticandPhysiological Impacts of Transposable Elements, October 10, 2017, Heidelberg, Germany.

American Society for Cell Biology;The Society for Molecular Biology & Evolution;American Society for Biochemistry and Molecular Biology;The Nigerian Society of Biochemistry and Molecular Biology;Molecular Biology Association Search Form - CGAP.

Track 2:Gene Therapy and Genetic Engineering

Thegenetic engineeringis also called asgenetic modification. It is the direct manipulation of an organism'sofgenomeby usingbiotechnology. It is a set of technologies used to change the genetic makeup of the cell and including the transfer of genes across species boundaries to produce improved novelorganisms. Genesmay be removed, or "knocked out", using anuclease.Gene is targetinga different technique that useshomologousrecombinationto change anendogenous gene, and this can be used to delete a gene, removeexons, add a gene, or to introducegenetic mutations. There is an dna replacement therapy, Genetic engineering does not normally include traditional animal and plant breeding, gene sequencing, in vitro fertilization, induction of polyploidy,mutagenesisand cell fusion techniques that do not use recombinant nucleic acids or a genetically modified organism in the process,diseases treated with gene therapywas initially meant to introduce genes straight into human cells, focusing on diseases caused by single-gene defects, such as cystic fibrosis, hemophilia, muscular dystrophy and sickle cell anemia

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8thWorld Congress onMolecular Pathology, June 26-27, 2017 San Diego, USA; 11thInternational Conference onSurgical Pathology& Practice, March 27-28, 2017, MADRID, SPAIN; 13th EuropeanPathologyCongress, Aug 02-03, 2017, MILAN, ITALY; 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017 march 29, 2017 - March 31, 2017, bochum , Germany.

Association for Clinical Genetic Science;Genetics Society of America | GSA;Association of Genetic Technologists;Molecular Genetics - Human Genetics Society of Australasia;Genetic Engineering - Ecological Farming Association.

Track 3:Cell & Gene Therapy

Cell therapy is also calledcellular therapyorCyto therapy, in which cellular material is injected into patient this generally means intact, living cells. The first category iscell therapyin mainstream medicine. This is the subject of intense research and the basis of potential therapeutic benefit. Such research can be controversial when it involves human embryonic material. The second category is in alternative medicine, and perpetuates the practice of injecting animal materials in an attempt to cure disease.Gene therapyis the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease. Gene therapy is a way to fix agenetic problemat its source. The polymers are either translated into proteins, interfere with targetgene expression, or possibly correct genetic mutations. The most common form uses DNA that encodes a functional,therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells. Vectors used in gene therapy, the vector incorporates genes intochromosomes. The expressed nucleases then knock out and replace genes in the chromosome. The Center forCell and Gene Therapyconducts research into numerous diseases, including but not limited to PediatricCancer, HIV gliomaandCardiovascular disease.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, 27 Canada ; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand ; American Society ofGeneandCell Therapy(ASGCT) 20th Annual Meeting, 10 - 13 May 2017, Washington, DC;Genomic Medicine for Clinicians(course), January 25-27, 2017, Hinxton , Cambridge, UK; Embo Conference:ChromatinandEpigenetics, Heidelberg, Germany, May 3, 2017; 14th International Symposium on Variants in theGenomeSantiago de Compostela, Galicia, Spain, June 5 - 8, 2017;

Genetics and Molecular Medicine - American Medical Association;Genetics Society of America / Gsa;British Society for Genetic Medicine;British Society for Gene and Cell Therapy; Australasian Gene Therapy Society.

Track 4:Cell Cancer Immunotherapy

Immunologydeals with the biological and biochemical basis for the body's defense against germs such as bacteria, virus and mycosis (fungal infections) as well as foreign agents such asbiological toxinsand environmental pollutants, and failures and malfunctions of these defense mechanisms. Cancer immunotherapy is the use of the immune system to treat cancer. Immunotherapies can be categorized as active, passive or hybrid (active and passive). Antibodies are proteins produced by the immune system that bind to a target antigen on the cell surface. The immune system normally uses them to fight pathogens. A type of biological therapy that uses substances to stimulate or suppress the immune system to help the body fight cancer, infection, and other diseases. Some types of immunotherapy only target certain cells of the immune system. Others affect the immune system in a general way. Types of immunotherapy include cytokines, vaccines, bacillus Calmette-Guerin (BCG), and some monoclonal antibodies.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

9thAnnual Meeting onImmunologyandImmunologist, July 03-05, 2017 Kuala Lumpur, Malaysia; 8th MolecularImmunology&ImmunogeneticsCongress, March 20-21, 2017 Rome, Italy; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; July 03-05, 2017; B Cells and T Follicular Helper Cells Controlling Long-Lived Immunity (D2), April 2017, 2327, Whistler, British Columbia, Canada; Mononuclear Phagocytes in Health,Immune Defense and Disease, 304 May, Austin, Texas, USA;Modeling Viral Infections and ImmunityMAY 2017, 14, Estes Park, Colorado, USA; IntegratingMetabolism and Immunity(E4)292 June, Dublin, Ireland.

The American Association of Immunologists;Clinical Immunology Society ; Indian Immunology Society;IUIS - International Union of Immunological Societies;American Society for Histocompatibility and Immunogenetics.

Track 5:Clinical Genetics

Clinical geneticsis the practice of clinical medicine with particular attention tothe hereditary disorders. Referrals are made togenetics clinicsfor the variety of reasons, includingbirth defects,developmental delay,autism,epilepsy, and many others. In the United States, physicians who practice clinical genetics are accredited by theAmerican Board of Medical Genetics and Genomics(ABMGG).In order to become a board-certified practitioner of a Clinical Genetics, a physician must complete minimum of 24 months of his training in a program accredited by the ABMGG. Individual seeking acceptance intoclinical geneticstraining programs and should hold an M.D. or D.O. degree (or their equivalent)and he/she have completed a minimum of 24 months of their training in ACGME-accredited residency program internal medicine, pediatrics and gynecology or other medical specialty.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Belgian Society OfHuman GeneticsMeeting 2017 february 17, 2017, Belgium; American College Of Medical Genetics 2017 AnnualClinical GeneticsMeeting march 21-25 2017, phoenix , United States; German Society Of Human Genetics 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017 march 29, 2017 - March 31, 2017, bochum , Germany; Spanish Society OfHuman GeneticsCongress 2017april 25, 2017 - April 28, 2017 madrid , Spain;

Clinical Genetics Associates;Clinical Genetics Society(CGS);The genetic associate;International Conference on Clinical and Medical Genetics;Association for Clinical Genetic Science;The American Society of Human Genetics.

Track 6:Pharmacogenetics

Pharmacogeneticsis the study of inherited genetic differences in drug metabolic pathways which can affect individual responses towards the drugs, both in their terms of therapeutic effect as well as adverse effects. In oncology, Pharmacogenetics historically is the study ofgerm line mutations(e.g., single-nucleotide polymorphisms affecting genes coding forliver enzymesresponsible for drug deposition and pharmacokinetics), whereaspharmacogenomicsrefers tosomatic mutationsin tumoral DNA leading to alteration in drug response.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Spanish Society OfHuman GeneticsCongress 2017april 25, 2017 - April 28, 2017, madrid , Spain; 8th World Congress onPharmacology, August 07-09, 2017 Paris, France; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico; 8th World Congress OnPharmacologyAndToxicology, July 24-26, 2017, Melbourne, Australia; German Society Of Human Genetics 28th Annual Meeting, Austrian Society ForHuman GeneticsAnd The Swiss Society OfMedical GeneticsCombined Meeting 2017march 29, 2017 - March 31, 2017 bochum , Germany.

Pharmacogenomics - American Medical Association;Associate Principal Scientist Clinical Pharmacogenetics;European Society of Pharmacogenomics and Personalised Therapy;Genome-wide association studies in pharmacogenomics.

Track 7:Molecular Genetic Pathology

Molecular genetic pathologyis an emerging discipline withinthe pathologywhich is focused in the study and diagnosis of disease through examination of molecules within the organs, tissues or body fluids. A key consideration is more accurate diagnosis is possible when the diagnosis is based on both morphologic changes in tissuestraditional anatomic pathologyand onmolecular testing. Molecular Genetic Pathology is commonly used in diagnosis of cancer and infectious diseases. Integration of "molecular pathology" and "epidemiology" led tointerdisciplinaryfield, termed "molecular pathological epidemiology" (MPE),which representsintegrative molecular biologicand population health science.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th World Congress OnMolecular Pathology, June 26-27, 2017 San Diego, USA; 11th International Conference OnSurgical Pathology& Practice, March 27-28, 2017, Madrid, Spain; 13th EuropeanPathologyCongress, Aug 02-03, 2017, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017.

Clinical Pathology Associates Molecular Pathology; Association mapping Wikipedia;Association for Molecular Pathology(AMP);Molecular Pathology - Association of Clinical Pathologists;SELECTBIO - Molecular Pathology Association of India.

Track 8:Gene Mapping

Genomemappingis to place a collection of molecular markers onto their respective positions ongenome.Molecular markerscome in all forms. Genes can be viewed as one special type of genetic markers in construction ofgenome maps, and the map is mapped the same way as any other markers. The quality ofgenetic mapsis largely dependent upon the two factors, the number of genetic markers on the map and the size of themapping population. The two factors are interlinked, and as larger mapping population could increase the "resolution" of the maps and prevent the map being "saturated". Researchers begin a genetic map by collecting samples of blood or tissue from family members that carry a prominent disease or trait and family members that don't. Scientists then isolate DNA from the samples and closely examine it, looking for unique patterns in the DNA of the family members who do carry the disease that the DNA of those who don't carry the disease don't have. These unique molecular patterns in the DNA are referred to as polymorphisms, or markers.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

3rd WorldBio Summit&Expo, Abu Dhabi, UAE, June 19-21, 2017; 9th International Conference onGenomicsandPharmacogenomicsJune 15-16, 2017 London, Uk; Keystone Symposium: Mononuclear Phagocytes in Health,Immune DefenseandDisease, 304 May 2017, Austin, Texas, USA;Molecular Neurodegeneration(course) Hinxton, Cambridge, UK, January 9-14, 2017;

Association for Clinical Genetic Science;Genome-wide association study Wikipedia;Gene mapping by linkage and association analysis NCBI;Gene mapping by linkage and association analysis | Springer Link.

Track 9:ComputationalGenomics

Computational genomics refers to the use of computational and statistical analysis to decipherbiologyfromgenome sequencesand related data, including DNA and RNA sequence as well as other "post-genomic" data. This computational genomics is also known asComputational Genetics. These, in combination with computational and statistical approaches to understanding the function of the genes and statistical association analysis, this field is also often referred to as Computational and Statistical Genetics/genomics. As such, computational genomics may be regarded as a subset of bioinformatics and computational biology, but with a focus on using whole genomes rather than individual genes to understand the principles of how the DNA of a species controls its biology at the molecular level and beyond. With the current abundance of massive biological datasets, computational studies have become one of the most important means to biological discovery.The field is defined and includes foundations in thecomputer sciences,applied mathematics, animation, biochemistry, chemistry, biophysics,molecular genetics,neuroscienceandvisualization. Computational biology is different from biological computation, which is a subfield of computer engineering using bioengineering and biology to build computers, but is similar tobioinformatics.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

Modeling Viral Infections and Immunity,10. MAY 2017, 14, Estes Park, Colorado, USA;Integrating Metabolism and Immunity(E4)292 June, Dublin, Ireland; EMBL Conference:Mammalian GeneticsandGenomics, Heidelberg, Germany, October 24, 2017; EMBO|EMBL Symposium: The Mobile Genome:GeneticandPhysiological Impacts of Transposable Elements, Heidelberg, Germany, October 10, 2017;

American Association of Bio analysts - Molecular/Genetic Testing;ISCB - International Society for Computational Biology;International Society for Computational Biology Wikipedia;Bioinformatics societies OMICtools;Towards an Australian Bioinformatics Society.

Track 10:Molecular Biotechnology

Molecular Biotechnologyis the use of living systems and organisms to develop or to make products, or "any technological application that uses the biological systems, living organisms or derivatives, to make or modify products or processes for specific use. Molecular biotechnology results from the convergence of many areas of research, such as molecular biology, microbiology, biochemistry, immunology, genetics and cell biology. It is an exciting field fueled by the ability to transfer genetic information between organisms with the goal of understanding important biological processes or creating a useful product. The completion of the human genome project has opened a myriad of opportunities to create new medicines and treatments, as well as approaches to improve existing medicines. Molecular biotechnology is a rapidly changing and dynamic field. As the pace of advances accelerates, its influence will increase. The importance and impact of molecular biotechnology is being felt across the nation. Depending on the tools and applications, it often overlaps with the related fields of bioengineering,biomedical engineering, bio manufacturing andmolecular engineering.Biotechnologyalso writes on the pure biological sciences animalcell culture, biochemistry,cell biology, embryology, genetics, microbiology, andmolecular biology.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain;Integrating MetabolismandImmunity (E4), 292 June, Dublin, Ireland.

Biotech Associations - Stanford University;Indian Society of Genetics, Biotechnology Research & Development;Genetics and Molecular Medicine - American Medical Association;Genetics Society of America | GSA, British Society for Genetic Medicine;Heritability in the Era of Molecular Genetics - Association for Psychological science.

Track 11:Genetic Transformation

Genetic Transformationis the genetic alteration of cell resulting from the direct uptake and incorporation ofexogenous genetic materialfrom its surroundings through thecell membrane. Transformation is one of three processes for horizontal gene transfer, in which exogenous genetic material passes from bacterium to another, the other two being conjugation transfer of genetic material between two bacterial cells in direct contact andTransductioninjection offoreign DNAby a bacteriophage virus into thehost bacterium. And about 80 species of bacteria were known to be capable of transformation, in 2014, about evenly divided betweenGram-positiveandGram-negative Transformation" may also be used to describe the insertion of new genetic material into non-bacterial cells, including animal and plant cells.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

13th EuropeanPathologyCongress, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017; 2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, Canada; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk;

American Society of Gene & Cell Therapy: ASGCT;Gene Therapy Societies and Patient Organizations - Gene Therapy Net;European Society of Gene and Cell Therapy (ESGCT);British Society for Gene and Cell Therapy;Gene Therapy - American Medical Association.

Track 12:Genetic Screening

Genetic screenis an experimental technique used to identify and select the individuals who possess a phenotype of interest inmutagenized population. A genetic screen is a type ofphenotypic screen. Genetic screen can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While thegenome projectshave identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how thosegenes function.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

13th EuropeanPathologyCongress, Aug 02-03, 2017, Milan, Italy; 2nd World Congress onHuman Genetics&Genetic Disorders, November 02-03, 2017 Toronto, 27 Canada; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; Embo|Embl Symposium: TheMobile Genome: Genetic And Physiological Impacts Of Transposable Elements, Heidelberg, Germany, October 10, 2017, 10 - 13 May 2017, American Society ofGeneandCell Therapy(ASGCT) 20th Annual Meeting, Washington, DC;

Association for Clinical Genetic Science; Association for Molecular Pathology (AMP);Mapping heritability and molecular genetic associations with cortical;Genetics and Molecular Medicine - American Medical Association.

Track 13:Regulation of Gene Expression

Regulation of Gene expressionincludes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA), and is informally termed gene regulation. Sophisticated programs of gene expression are widely observed in biology, Virtually any step of gene expression can be modulated, fromtranscriptional initiation,RNA processing, and post-translational modificationof a protein. Often, one gene regulator controls another in a gene regulatory network. Any step of gene expression may be modulated, from theDNA-RNA transcriptionstep to post-translational modification of a protein.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand; EMBO|EMBL Symposium: The Mobile Genome:GeneticandPhysiological Impacts of Transposable Elements, Heidelberg, Germany, October 10, 2017; 10. MAY 2017, 14, Estes Park, Colorado, USA,Modeling Viral Infections and Immunity; 292 June, Dublin, Ireland,Integrating Metabolism and Immunity(E4); MAY 2017, 14, Estes Park, Colorado, USA,Modeling Viral InfectionsandImmunity; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; 9th International Conference onGenomicsandPharmacogenomics, June 15-16, 2017 London, Uk;

Gene Therapy Societies and Patient Organizations - Gene Therapy Net;European Society of Gene and Cell Therapy (ESGCT);British Society for Gene and Cell Therapy;Gene Therapy - American Medical Association

Track 14: Cancer Gene Therapy

Cancer is an abnormal growth of cells the proximate cause of which is an imbalance in cell proliferation and death breaking-through the normal physiological checks and balances system and the ultimate cause of which are one or more of a variety of gene alterations. These alterations can be structural, e.g., mutations, insertions, deletions, amplifications, fusions and translocations, or functional (heritable changes without changes in nucleotide sequence). No single genomic change is found in all cancers and multiple changes (heterogeneity) are commonly found in each cancer generally independent of histology. In healthy adults, the immune system may recognize and kill the cancer cells or allow non-detrimental host-cancer equilibrium; unfortunately, cancer cells can sometimes escape the immune system resulting in expansion and spread of these cancer cells leading to serious life threatening disease. Approaches to cancer gene therapy include three main strategies: the insertion of a normal gene into cancer cells to replace a mutated (or otherwise altered) gene, genetic modification to silence a mutated gene, and genetic approaches to directly kill the cancer cells. Pathway C represents immunotherapy using altered immune cells. Another unique immunotherapy strategy facilitated by gene therapy is to directly alter the patient's immune system in order to sensitize it to the cancer cells. One approach uses mononuclear circulating blood cells or bone marrow gathered from the patient.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; World Congress onBio therapeutics, May 22-23, 2017, Mexico City, Mexico;Human Genome Meeting(HGM 2017), February 5-7 2017, Barcelona, Spain;Integrating MetabolismandImmunity (E4), 292 June, Dublin, Ireland.

Biotech Associations - Stanford University;Indian Society of Genetics, Biotechnology Research & Development;Genetics and Molecular Medicine - American Medical Association;Genetics Society of America | GSA, British Society for Genetic Medicine;Heritability in the Era of Molecular Genetics - Association for Psychological science.

Track 15:Genetic Transplantation

Transplantation genetics is the field of biology and medicine relating to the genes that govern the acceptance or rejection of a transplant. The most important genes deciding the fate of a transplanted cell, tissue, or organ belong to what is termed the MHC (the major histocompatibility complex). Genetic Transplantation is the moving of an organ from one body to another or from a donor site to another location on the person's own body, to replace the recipient's damaged or absent organ. Organs and/or tissues that aretransplantedwithin the same person's body are calledauto grafts. Transplants that are recently performed between two subjects of the same species are calledallografts. Allografts can either be from a living or cadaveric source Organs that can be transplanted are the heart, kidneys, liver, lungs, pancreas, intestine, and thymus. The kidneys are the most commonlytransplanted organs, followed by the liver and then the heart. The main function of the MHC antigens is peptide presentation to the immune system to help distinguish self from non-self. These antigens are called HLA (human leukocyte antigens). They consists of three regions: class I (HLA-A,B,Cw), class II (HLA-DR,DQ,DP) and class III (no HLA genes)

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

8th World Congress onPharmacology, August 07-09, 2017 Paris, France; International Conference onClinicalandMolecular Genetics, Las Vegas, USA, April 24-26, 2017; Aug 02-03, 2017, 13th EuropeanPathologyCongress, Milan, Italy; Embl Conference:Mammalian GeneticsAndGenomics, Heidelberg, Germany, October 24, 2017; 7th International Conference onPlant Genomics, July 03-05, 2017, Bangkok, Thailand.

American society of Transplantation;American Society of Transplant Surgeons: ASTS; Patient associations. Donation and transplantation;American Society of Gene & Cell Therapy ASGCT;Gene Therapy Societies and Patient Organizations - Gene Therapy Net.

Track 16:Cytogenetics

Cytogeneticsis a branch ofgeneticsthat is concerned withstudy of the structure and function of the cell, especially thechromosomes. It includes routine analysis of G-banded chromosomes, othercytogenetic banding techniques, as well as molecular Cytogenetics such as fluorescent in suitable hybridization FISH and comparativegenomic hybridization.

RelatedMolecular Biology Conferences| Genetics Conferences|Gene Therapy Conferences|Biotechnology Conferences| Immune Cell Therapy Conferences

9thAnnual Meeting onImmunologyandImmunologist, July 03-05, 2017 Kuala Lumpur, Malaysia; 8th MolecularImmunology&ImmunogeneticsCongress, March 20-21, 2017 Rome, Italy; 8th EuropeanImmunologyConference, June 29-July 01, 2017 Madrid, Spain; July 03-05, 2017; B Cells and T Follicular Helper Cells Controlling Long-Lived Immunity (D2), April 2017, 2327, Whistler, British Columbia, Canada.

European Cytogeneticists Association;Association of Genetic Technologists;Association for Clinical Genetic Science;Cytogenetics - Human Genetics Society of Australasia;European Cytogeneticists Association

Molecular Biology 2016

Molecular Biology 2016 Report

2ndWorld Bio Summit & Molecular Biology Expowas organized during October 10-12, 2016 at Dubai, UAE. The conference was marked with the attendance ofEditorial Board Members of supporting journals, Scientists, young and brilliant researchers, business delegates and talented student communities representing more than 25 countries, who made this conference fruitful and productive.

This conference was based on the theme Recent advances in Bio Science which included the following scientific tracks:

Molecular Biology

Microbiology

Analytical Molecular Biology

Bioinformatics

Biochemistry and Molecular Biology

Molecular Biology and Biotechnology

Cancer Molecular Biology

Computational Biology

Molecular Biology of the Cell

Molecular biology of the cardiovascular system

Molecular Biology in Cellular Pathology

Molecular Biology of Diabetes

Molecular Biology and Genetic Engineering

Enzymology and Molecular Biology

Molecular Biology of the Gene

View post:
Molecular Genetics - Genetics Conferences