Advanced diagnostic methods needed to prevent, treat cancer – The Tribune

Tribune News Service

Tribune News Service

Bathinda, February 4

To commemorate World Cancer Day, Central University of Punjab (CUP) on Tuesday organised lectures on topic, Cancer Prevention and Awareness, on February 3.

The programme was organised by the Departments of Biochemistry, Zoology and Human Genetics & Molecular Medicine under the leadership of Vice-Chancellor Prof K Kohli. Eminent oncologists Dr Praveen Bansal, Director, Baba Farid University of Health Science (BFUHS), Faridkot, and cancer immunologist Dr Sunil Arora, cancer immunologist, PGIMER, Chandigarh, were the guest speakers.

The speakers highlighted the need for lifestyle modifications to reduce the risk of cancer. Besides faculty members, non-teaching employees, over 300 students and research scholars took part in the event.

Dr Aklank Jain, a cancer biologist from the Department of Zoology, welcomed the guest speakers and introduced the programme theme. He said: There is a need for advanced cancer diagnostic methods to prevent and treat cancer.

Dr Parveen Bansal defined cancer as malignant growth caused due to uncontrolled division of cells. He said spices, vegetables and fruits kept diseases at bay. He emphasised practising asans such as upavasa, dinacharya and ritucharya in daily life to stay fit and healthy.

Dr Sunil Arora said it was essential to study tumour microenvironment to identify the growth and development of cancer cells. He said additional research was needed to study the origin and chemoresistance of cancer cells. Cancer can be cured by targeting the tumour microenvironment and by strengthening the immune system, Dr Sunil said.

Dr Shashank Kumar, cancer biochemist from the Department of Biochemistry, CUP, said according to the Indian Council of Medical Research (ICMR) data, around 1.5 lakh new breast cancer cases occurred annually in the country. Stage 0 breast cancer is the earliest form of breast cancer and due to the absence of symptoms, it is hard to detect, he said. Dr Shashank said the periodic physical examination of breast by self or a trained health worker might help detect cancer early.

Dr Sabyasachi Senapati, human geneticist from the Department of Human Genetics & Molecular Medicine, CUP, said: Appropriate genetic tests for early diagnosis and preventive therapies for some forms of familial breast, prostate, uterine, colorectal, liver and ovarian cancer can reduce the risk of cancer by up to 40%. The Department of Health Research and the ICMR are creating awareness on the disease through several projects.

During the programme, university students presented a thematic poster. A nukkad natak to educate public about cancer prevention was staged by students.

The rest is here:
Advanced diagnostic methods needed to prevent, treat cancer - The Tribune

Physical forces at the interface with biology and chemistry – PLoS Blogs

Cell behaviour, tissue formation/regulation, physiology and disease are all influenced by cellular mechanics and physical forces. The field of mechanobiology has for a long time striven to fully understand how these forces affect biological and cellular processes, as well as developing new analytical techniques. At the same time, the properties of advanced smart materials, such as self-healing, self-reporting and responsive polymers, have been determined by a complex interplay between the thermodynamics, kinetics and mechanics of dynamic bonding strategies. These are tightly connected to the field of mechanochemistry, whichaims to elucidate and harness molecular level design principles and translate these to the bulk material level as emergent properties. At this interface between disciplines lies an emerging and exciting research area that has been strongly facilitated by the collaboration of physicists, chemists, engineers, materials scientists, and biologists.

We had the pleasure of speaking to Kerstin Blank and Matthew Harrington, who have been working on how mechanical forces influence biological systems, molecules and responsive biomaterials, about their views of the field and the recent Multiscale Mechanochemistry and Mechanobiology conference of which PLOS ONE was one of the proud sponsors.

How did you first become interested in this topic?

Kerstin: When I started in this field in 2000, I was mostly impressed by the technical possibilities. I was working with Hermann Gaub, one of the leaders in single-molecule force spectroscopy. I found it fascinating that we could stretch a single biological molecule and observe its response. I did ask myself sometimes if this was just something that physicists like to play with or if one could solve biomedically relevant questions with this approach. Now, almost 20 years later, it has become very evident that a large number of biological systems are regulated by mechanical forces in many different ways.

Matt: My educational background was primarily in biology and biochemistry, but I became fascinated with the capacity of certain biological materials to exhibit self-healing responses in the absence of living cells. I reasoned that this must arise from specific chemical and physical design principles in the material building blocks themselves, and I became obsessed with figuring out how this works. This led me to the self-healing materials community, which was largely populated with chemists and materials engineers, but not so many biologists. When I began to see that many of the same principles at play in synthetic self-healing materials were present in nature, and that in some cases nature was going well beyond the state of the art in synthetic self-healing materials, I realized the enormous potential at the interface of mechanobiology and mechanochemistry. I havent looked back since.

Which areas are you most excited about?

Kerstin: I find it very intriguing how cells utilize mechanical information from their environment and then feed it into intracellular biochemical signalling cascades. Understanding these mechanosensing and mechanotransduction processes requires knowledge of the cellular players and their interactions. But to develop the complete picture, we also need to investigate how cells interact with their extracellular environment. This also involves understanding the microscopic and macroscopic mechanical properties of the extracellular environment. I am highly excited about the development of molecular force sensors that convert mechanical force into a fluorescent signal. This allows for the localized detection of cell traction forces and, in the future, will also enable us to visualize force propagation inside materials that mimic the natural extracellular matrix.

Matt: I am currently most excited about understanding how and why nature uses different transient interactions to control the fabrication and viscoelastic mechanical responses of biopolymeric materials and the potential this has for the development of sustainable advanced polymers of the future. Recent discoveries in the field clearly show that in contrast to traditional polymers, living organisms commonly use specific supramolecular interactions based on dynamic bonds (e.g. hydrogen bonding, metal coordination or pi-cation interactions) to guide the self-assembly and mechanical properties of protein-based materials. The thermodynamic and kinetic properties of these labile bonds enable a certain dynamicity and responsiveness in these building blocks that provides potential inspiration for environmentally friendly materials processing and active/tuneable material properties. These concepts are already being adapted in a number of exciting bio-inspired polymers.

What progress has the field made in the last years?

Kerstin: It is now well-established that cells are able to sense and respond to the elastic and viscoelastic properties of the material they grow in. We have also learned a lot about how the mechanical signal is converted into biochemical signalling on the intracellular side. This is a direct result of many new technological developments, including the molecular force sensors described above. It is further a result of the increasing development of extracellular matrix mimics with well-defined and tuneable mechanical properties and microstructures.

Matt: Due to recent technological advances it is becoming possible to link specific aspects of mechanical material responses directly to structural features at multiple length scales. The better we understand these structure-property relationships, the better we can optimize the material response. This provides an intimate feedback loop that has enabled major breakthroughs in the fields of active matter, including self-healing and self-reporting polymers.

What is the real-world impact?

Kerstin: It is widely accepted that mechanical information plays a key role in stem cell differentiation. It has further been shown that mutated cells, e.g. in cancer or cardiovascular diseases, have different mechanical properties and show alterations in processing mechanical information. Understanding the origin of these changes and being able to interfere with them will have direct impact in disease diagnostics and treatment. Engineering materials with molecularly controlled structures and mechanical properties will further enable the community to direct stem cell differentiation in a more defined manner for applications in tissue engineering and regenerative medicine.

Matt: Aside from biomedical impacts, the insights gained from understanding the structure-function relationships defining the mechanical response of molecules are also extremely relevant for the development and sustainable fabrication of next generation advanced polymers. Given the global threat of petroleum-based plastics processing and disposal, this is an extremely important aspect of the research in this field.

What are the challenges and future developments of the field?

Kerstin: At this moment, we usually try to relate the macroscopic material properties (measured in the lab) with the microscopic environment that cells sense. In my view, we are missing a key piece of information. We need to understand how the macroscopic properties of a material emerge from its molecular composition, topography and hierarchical structure. In combination, all these parameters determine the mechanical properties of a material and, more importantly, what the cells see. In fact, this is not only key for the development of new extracellular matrix mimics. The same questions need to be answered for understanding how nature assembles a wide range of structural and functional materials with outstanding properties, such as spider silk, cellulose composites and nacre. Here, I see a great potential for future collaboration between disciplines.

Matt: There are enormous challenges on the bio-inspiration side of the field involved with transferring design principles extracted from biological materials into synthetic systems. Biology is inherently complex, so there is a common tendency to distil the extracted concept to a single functional group or concept, while often there are collective effects that are lost by this more reductionist approach. On the biological side, a key challenge is ascertaining which are the relevant design principles. On the bio-inspired side, there are challenges in finding appropriate synthetic analogues to mimic the chemical and structural complexity of the natural system. Overcoming this barrier requires cross-disciplinary communication and feedback and is an extremely exciting and active area in our field.

Why and when did you decide to organize a conference on this topic?

Kerstin & Matt: While both working at the Max Planck Institute of Colloids and Interfaces, we quickly realized that the cell biophysics, biomaterials, mechanochemistry and soft matter communities are all interested in very similar questions while using similar methods and theoretical models; however, we had the impression that they hardly interact with each other. We thought of ways to change this and organizing a conference was clearly one way to do it. The first conference with the topic Multiscale Mechanochemistry and Mechanobiology: from molecular mechanisms to smart materials took place in Berlin in 2017. When bringing this idea forward in our respective communities, we immediately realized that we hit a nerve. Now that the conference has taken place for the second time in Montreal in 2019, we really got the feeling that we are starting to create a community around this topic. There will be another follow up conference from August 23-25, 2021 in Berlin (@mcb2021Berlin).

What are the most interesting and representative papers published in PLOS ONE in this field?

Kerstin: The paper Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry, published by Sedlak et al., is a highly interesting contribution to the field of single-molecule force spectroscopy, which was also presented at the conference. This work highlights the methodological developments in single-molecule force spectroscopy since its very early days. The authors from the Gaub labhave re-measured the well-known streptavidin-biotin interaction, now with a very high level of control over the molecular setup. It clearly shows how far the field has come and also that protein engineering, bioconjugation chemistry, instrumentation development and data analysis all need to go hand in hand to obtain clear and unambiguous experimental results. Clearly, considering a defined molecular setup is not only crucial for this kind of measurement but also for the development of biomimetic materials with controlled mechanical properties.

Sedlak SM, Bauer MS, Kluger C, Schendel LC, Milles LF, Pippig DA, et al. (2017) Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry. PLoS ONE 12(12): e0188722,https://doi.org/10.1371/journal.pone.0188722

Matt: Accurately detecting and measuring the mechanical forces at play inside living cells is one of the key challenges in the field of mechanobiology, given the small size and dynamic nature of the intracellular environment. However, this information is extremely important for understanding the role of mechanics in regulating cellular functions such as growth, differentiation and proliferation, as well as disease states. In the Nuclei deformation reveals pressure distributions in 3D cell clusters paper from the Ehrlicher group, the authors address this challenge by using fluorescently labelled proteins in the cell nucleus coupled with confocal microscopy to measure compressive pressures within cells and cell clusters. Using this methodology, they explored the effect of cell number and shape of multicellular clusters on the internal compressive pressure within cells, providing potentially important insights for cellular signalling and function. These studies have potential applications in both in vitro and in vivo models, and provide a relatively simple methodology for acquiring intracellular mechanical data.

Khavari A, Ehrlicher AJ (2019) Nuclei deformation reveals pressure distributions in 3D cell clusters. PLoS ONE 14(9): e0221753,https://doi.org/10.1371/journal.pone.0221753

Other PLOS ONE representative papers:

Kerstin Blank studied Biotechnology at the University of Applied Sciences in Jena and obtained her PhDin Biophysics under the supervision of Prof Hermann Gaub at Ludwig-Maximilians Universitt in Munich. After two postdocs at the Universit de Strasbourg and the Katholieke Universiteit Leuven, she became an Assistant Professor at Radboud University in Nijmegen in 2009. In 2014, she moved to the Max Planck Institute of Colloids and Interfaces where she holds the position of a Max Planck Research Group Leader. Her research interests combine biochemistry and single molecule biophysics with the goal of developing molecular force sensors for biological and materials science applications.

Matthew J. Harrington is Canada Research Chair in Green Chemistry and assistant professor in Chemistry at McGill University since 2017. He received his PhD in the lab of J. Herbert Waite from the University of California, Santa Barbara. Afterwards, he was a Humboldt postdoctoral fellow and then research group leader at the Max Planck Institute of Colloids and Interfaces in the Department of Biomaterials. His research interests are focused on understanding biochemical structure-function relationships and fabrication processes of biopolymeric materials and translating extracted design principles for production of sustainable, advanced materials.

Here is the original post:
Physical forces at the interface with biology and chemistry - PLoS Blogs

Regional symposium aims to inform about the impact of plastics – – The Lasso

Texas Womans Unversity hosted the annual regional Science Education for New Civic Engagements and Responsibilities symposium, held in the Ann-Stuart Science Complex Jan. 31, as Zero Impact event, focusing on the impacts of plastics in the environment.

SENCER is a faculty development reform and science education program created to educate people about issues relevant to social responsibility and civic engagement.

It is a faculty development [program], but it also helps faculty develop courses where students get involved where you take what youre learning in class and apply it to a real-life situation, Dr. Richard Sheardy, professor and chair of the Department of Chemistry and Biochemistry, said. We know from years of this being done that students actually learn better by getting involved. Civically engaged students are better citizens, and so democracy is strengthened, as well.

The topic of the symposium was Citizen Science: The Impact on Our Communities by Plastics in Our Environment. Sheardy said he got the idea for the theme after having dinner with one of the symposium speakers, Dr.Catherine Middlecamp. Middlecamp also suggested hosting the event as a Zero Impact event.

The goal of a Zero Impact event is to minimize the amount of waste used throughout the symposium. In order to effectively plan the carbon-neutral event, five TWU students and a faculty advisor teamed up with Middlecamp and two students from the University of Wisconsin-Madison. The Zero Impact team came up with ways to lessen the amount of waste produced from the symposium like ordering from a local restaurant, buying dishes, fabric napkins and silverware instead of using plastic ones, and using reusable nametags.

We have other events on campus, so were going to reuse all of this, Dr. Nasrin Mirsaleh-Kohan, an associate professor at TWU and SENCER Center for Innovation Southwest co-director, said. So over time, were going to eliminate a lot of plastics. At some point, if anybody on campus has an event, they can borrow it.

Sheardy said he hopes that other groups on campus will also be willing to host Zero Impact events.

We have charged our team with reaching out to other groups and other student groups that might want to have an event, and they will help that group plan that event as a Zero Impact event, Sheardy said. And they can use our dishes.

The symposium began with several poster sessions that each discuss civic engagement. Sheardy said the topic of the posters sessions is not just limited to plastics in the environment, but how civic engagement is included in classes.

Adjunct faculty and Zero Impact team faculty adviser Alana Taylor presented about students learning sustainability and civic engagement in the class Sustainable Physical Science. Students were tasked with choosing five behavioral changes to implement in their lives for the duration of the semester as well as do five volunteer hours at an environmental organization local to them.

I started teaching the course in 2017, and I was trying to figure out a way to make sustainability fun and give them the opportunity to engage with the community and have behavioral change, Taylor said.

Taylor said many of her students enjoyed the assignment and felt as if though they made easy lifestyle changes.

My favorite [response] is my whole family changed after doing this project, Taylor said. That was one from one of my students who is a mother with three kids. She chose to do Trashless Lunch.

She didnt just do it for her. She did it for her whole family. She was able to report that her whole family will continue to do that, now, forever.

The rest of the symposium attendees listened to presentations ranging from topics on how to plan a Zero Waste event to how the chemistry community connects to policy decisions from speakers from the City of Denton, The New School, University of Montana, Belhaven University and many other universities.

As chemists, there are things we can do to address the problem, assess the problem and propose solutions, Sheardy said. We also need to educate the general public about the issues and what they can do to help. This is kind of like a kick-off to that.

Go here to see the original:
Regional symposium aims to inform about the impact of plastics - - The Lasso

Q&A: Chemical Biologist Ken Hsu to Use NSF CAREER Award to Fight Cancer – University of Virginia

A promising University of Virginia scientist, Ku-Lung (Ken) Hsu, an assistant professor of chemistry, has earned one of the National Science Foundations coveted Early Career Development Program Awards, which support junior faculty members who perform outstanding research and are regarded as exceptional teachers.

Part of the grant is used to integrate education and research in academic activities. Hsus award is for $681,000.

Hsu uses chemistry to control biological systems, particularly to modify the immune system to become an active combatant against cancer. His work understanding and controlling the inflammation response spans the search for new non-addictive drug options for treating pain, to modifying immune cells so they can recognize and kill cancer cells.

The five-year NSF CAREER grants are among the most prestigious available to young faculty in science and engineering, and are designed to provide significant resources to the early stage development of careers.

Many of Hsus laboratory studies are conducted in collaboration with clinical researchers in the School of Medicines Cancer Center as part of UVAs efforts to enhance research into precision medicine using immunotherapy to target life-threatening diseases at the fundamental molecular level.

Hsu discusses here his research and grant for readers of UVA Today.

Q. What drew you to this area of chemistry?

A. Chemical biology is an exciting area of chemistry because it is very creative, highly interdisciplinary and allows scientists to answer fundamental questions that ultimately improve human health through drug discovery and other new therapies. I enjoy the opportunity to work with experts in so many different fields, including pharmacology, pathology, neurology and cancer biology. As a result, I learn something new from each project.

My students also benefit greatly from being in this field because of an emphasis on collaborations, which increases diversity through individuals they interact with and expands the skillsets they obtain during their training. Medical research is becoming increasingly collaborative, so my students are becoming well-prepared for the research environments in which they will spend their careers.

Activating the immune response to fight cancer represents a very exciting treatment modality and UVA is well-positioned to be a leader in this front. The UVA Cancer Center has been a major supporter of my research program, and I look forward to continued interactions and collaborations in this community.

- Ken Hsu

Q. Describe the most compelling aspects of your latest research.

A. I am excited about two recent discoveries that embody research from our group in the field of chemical biology. Both reports are published in the journal Nature Chemical Biology.

In our first paper, we describe a new chemical reaction with broad applications for synthetic chemistry and drug discovery. The reaction we discovered possibly could come into common use for developing new treatments for cancer and other diseases in the future. This finding was especially rewarding because I teach related material in my organic chemistry course and our paper describes a new methodology for synthetic chemists and chemical biologists to tune chemical reactions for diverse real-world applications. This is compelling for my students, to know that what they are learning in class is also current and active to catalyze breakthrough research in our labs.

In our second report, our findings are directed toward fundamental discoveries in the realm of fat (lipid) molecules, which play a major role in the bodys metabolism at the cellular level. We used protein engineering to design artificial lipid kinase enzymes a specialized protein involved in cell growth, proliferation and other functions that can include the growth of cancers in order to better understand how cells regulate their fat composition. To our surprise and delight, we narrowed in on a very specific region of these lipid kinases that allow us to control how they operate in cells. Our findings will teach us and others in the field a more effective way to design therapeutics to combat these enzymes when they misbehave.

Q. How will this grant allow you to connect your research with teaching?

A. The NSF CAREER Award will provide new opportunities for applying our chemistry and technologies to study how individual cells control the metabolism of fats and lipids. We plan to develop compounds that attach to enzymes to illuminate how cells are similar or distinct based on their metabolism kind of like a molecular fingerprint. Our long-term goal is to create new opportunities for cell type discovery and push the boundaries of cell engineering.

The research is intimately connected to an educational outreach program designed to broadly impact Native American student communities by providing opportunities for UVA graduate students to teach how lipid biochemistry influences healthy food choices and eating behaviors in society.

Q. Where do you see your research going from here?

A. In the next five years, I am looking forward to applying our chemistry and technologies toward deeper understanding of lipid biology and metabolism in physiologically relevant models. We remain committed to discovery of new molecular pathways for immune system modulation, and our recent findings represent important steps toward our long-term goal.

Q. How promising is the future regarding immune system modulation?

A. Activating the immune response to fight cancer represents a very exciting treatment modality and UVA is well-positioned to be a leader in this front. The UVA Cancer Center has been a major supporter of my research program, and I look forward to continued interactions and collaborations in this community.

I believe the chemistry we are pursuing will provide new opportunities and technologies for exploring creative ways to study and control the immune system. Support from the NSF CAREER Award will pave the way for new ways to engineer immune cells for cancer and other potential disease indications.

Read more:
Q&A: Chemical Biologist Ken Hsu to Use NSF CAREER Award to Fight Cancer - University of Virginia

Global Itaconic Acid Market 2020 expected to reach around XX Billion USD at the end of 2025 with outstanding CAGR rate – Jewish Life News

Itaconic Acid Industry Global, Regional and Country Overview- Industry Overview, Segment Analysis, Market News, Forecast and Current Industry Trends, and Major Stakeholders

This market research report divides the global Itaconic Acid industry based on the major product type, end-use, key product form, and distribution type. The primary factors estimated to influence the future market demand include changing consumer needs, evolving technologies, introduction of new marketing and promotion tools, strong research and development base. Also, the key manufacturers operating in the Itaconic Acid market are vigorously investing in product portfolio expansion and business diversification in order to attract a potential customer base across emerging economies. High consumer awareness and strong incline towards branded products is projected to deliver significant market opportunities for Itaconic Acid market in the coming years.

You Can Request Free Report Sample @ http://www.marketresearchstore.com/report/global-itaconic-acid-market-report-2020-716035#RequestSample

This market study also deliversa comprehensive outlook on the major industry trends on regional, country, and global level. Market attractiveness in terms of product type, application industries, and regions will allow prospective investors to make sound business decision in the near future. In addition, the manufacturing cost analysis and raw material cost overview is provided to get in-depth knowledge about the upstream industry chain of Itaconic Acid market. The downstream buyers analysis is provided for different regions and country market.

Key Highlights of this Report:

Key Market Competitors: Kehai Biochemistry, Guoguang Biochemistry, Huaming Biochemistry, Alpha Chemika, Zhongshun Science & Technology

Regional Segments: North America: Canada, The U.S., Rest of North America Europe: Spain, Italy, U.K., France, Germany, France, Rest of Europe Asia Pacific: South Korea, China, Japan, India, Southeast Asia, Rest of Asia Pacific Latin America: Mexico, Brazil, Rest of LA (Colombia, Chile, Argentina, Peru, etc.) MEA (Middle East and Africa): South Africa, GCC Countries (Qatar, Oman, UAE, Saudi Arabia, Kuwait, Bahrain), and Rest of MEAIf you have any query feel free to ask our experts @ http://www.marketresearchstore.com/report/global-itaconic-acid-market-report-2020-716035#InquiryForBuying

Key competitors analysis focuses on the analysis of growth and expansion strategies along with evaluation of companys financial metrics such as basic earnings per share growth, profit margin, dividend, fair value, etc.

Original post:
Global Itaconic Acid Market 2020 expected to reach around XX Billion USD at the end of 2025 with outstanding CAGR rate - Jewish Life News

Scientists reveal the most extensive genetic map of cancers ever made – The Economist

It shows how hard tumours will be to crack

PERHAPS MORE than any other, cancer is seen as a disease of genes gone wrong. So, as genetic sequencing technology has become cheaper and faster, cancer scientists are using it to check which changes to genes cause tumours to spread.

The latest insights from one group, the international Pan-Cancer Analysis of Whole Genomes (PCAWG), are revealed this week in Nature. In an analysis of the full genomes of 2,658 samples of 38 types of tumour taken from the bladder to the brain, the researchers describe a blow-by-blow account of how a series of genetic mutations can turn normal cells into runaway clones. It provides the most comprehensive analysis yet of where to find this damaging disruption to DNA and, by unpicking the genetics of what makes cancer tick, just how hard it will be to tame.

For each of the cancer samples, the team produced a read-out of the tumour genomethe 3bn or so individual DNA lettersand compared it with the genome sequences of healthy cells taken from the same patients. In this way they could look for the genetic signatures of the cancer cells, where specific mutations had warped the genetic information.

Most mutations in the genome are harmless. But driver mutations, where genetic changes cause a cell to multiply more easily and faster than other cells, can trigger tumour growth. Many driver mutations have been found over the past decade and a handful have been translated into new medicines. In a fifth of breast cancers, for example, a driver mutation in the gene HER2 makes cells produce more of a protein on their surface that encourages them to grow and divide out of control. A series of drugs, including Herceptin, target this protein, and lead to significantly improved survival rates. The same HER2 mutation also appears in some lung cancers, raising hopes that similar therapies could work against that disease.

The problem is that most cancers have multiple driver mutations. Indeed, the PCAWG work found that on average each cancer genome carried four or five. And with some clever genetic archaeology they also found that some driver mutations can occur years before symptoms appear.

To discover this, researchers used a new concept called molecular time to reconstruct the cellular evolution of tumour cells. By comparing the DNA of cells within tumours, the researchers could place mutations in chronological order, based on how many cells in which they appeared. Earlier mutations occur more frequently. For example, driver mutations in a gene called TP53 were found to have originated at least 15 years before diagnosis in types of ovarian cancer, and at least five years before in types of colorectal and pancreatic cancer. Driver mutations in a gene called CDKN2A were found to have occurred in some lung cancers more than five years before diagnosis. In theory, that provides a window in which to find people at risk of developing these diseases, and perhaps prevent the cancer ever appearing.

The new study closes down talk that significant numbers of unknown driver mutations could lurk in the relatively unexplored regions of the human genome. One such driver mutation in non-coding DNA was found in 2013a mutation in the TERT gene across many different cancer types. To check for more like this, the consortium sequenced and analysed all the DNA letters of these non-coding regions (which account for 98% of human DNA) for the first time. They found that non-TERT driver mutations occurred at a rate of less than one per 100 tumours in these regions.

Peter Campbell of the Wellcome Sanger Institute in Cambridge, Britain, and a member of the PCAWG consortium, says an important contribution of the study is that by sequencing so many tumours it has raised the number of patients in whom a genetic contribution to their cancer can be identified from less than 70% to 95%. The goal, he says, is for genome-sequencing of tumours to become routine. Efforts to introduce this are under way in some countries, including Britain, the Netherlands and South Korea, he adds.

Results, results, resultsInsights are all very well, but what about cold, hard clinical progress? Turning genome sequences into meaningful predictors of cancer will require comparisons between samples from tens of thousands of patients, say the researchers, along with data on their treatments and survival rates. Processing this would be beyond the reach of any single organisation. Instead, a follow-up project is planned that includes national funding agencies, charities and corporate partners from more than a dozen countries around the world. It aims to link full sequences of 200,000 cancer patients to their clinical data by 2025.

The rest is here:
Scientists reveal the most extensive genetic map of cancers ever made - The Economist

Leading Experts in Genetics and Pregnancy Announce the Creation of a New Consortium – Yahoo Finance

BETHESDA, Md., Feb. 5, 2020 /PRNewswire/ --Prenatal genetic screening is a complex and rapidly evolving field of medicine.In an effort to help promote consensus recommendations and strive for consistency among various medical societies that issue recommendations and guidelines in the area of prenatal genetic testing, six national organizations have partnered to create the Reproductive Genetics Technology Consortium. (http://rgtc.perinatalquality.org)

Member organizations include the American College of Medical Genetics and Genomics; American Society for Reproductive Medicine; International Society of Prenatal Diagnosis; National Society of Genetic Counselors; Perinatal Quality Foundation; and Society for Maternal-Fetal Medicine. Representatives from each organization will meet regularly and as needed to facilitate group discussion and/or consensus.

The new Consortium aims to facilitate communication between professional organizations in their development of practice guidelines and to provide a forum for different societies to discuss appropriate utilization of reproductive genetic testing. It will also provide a forum through which commercial laboratories or other entities developing new technologies can proactively communicate to obtain input and guidance regarding new testing and will provide consensus expert opinions about the clinical utility and application of emerging genetic tests.

"Each member of the new Consortium has a goal of optimizing the health of women and infants," said SMFM representative, Mary Norton, MD. "Bringing our organizations together will establish an opportunity for dialogue between stakeholders and provide a stronger voice on these important issues."

ACMG President Anthony R. Gregg, MD, MBA, FACOG, FACMG said, "ACMG is confident that collaborations among the RGTC member organizations will ensure patients receive high quality care as innovative genetic technologies move from the laboratory to the bedside."

To contact the Consortium, contact Jean Spitz, MPH, CAE, RDMS at jspitz@perinatalquality.org.

About the American College of Medical Genetics and Genomics (ACMG) and ACMG Foundation

Founded in 1991, the American College of Medical Genetics and Genomics (ACMG) is the only nationally recognized medical society dedicated to improving health through the clinical practice of medical genetics and genomics and the only medical specialty society in the US that represents the full spectrum of medical genetics disciplines in a single organization. The ACMG is the largest membership organization specifically for medical geneticists, providing education, resources and a voice for more than 2,400 clinical and laboratory geneticists, genetic counselors and other healthcare professionals, nearly 80% of whom are board certified in the medical genetics specialties. ACMG's mission is to improve health through the clinical and laboratory practice of medical genetics as well as through advocacy, education and clinical research, and to guide the safe and effective integration of genetics and genomics into all of medicine and healthcare, resulting in improved personal and public health. Four overarching strategies guide ACMG's work: 1) to reinforce and expand ACMG's position as the leader and prominent authority in the field of medical genetics and genomics, including clinical research, while educating the medical community on the significant role that genetics and genomics will continue to play in understanding, preventing, treating and curing disease; 2) to secure and expand the professional workforce for medical genetics and genomics; 3) to advocate for the specialty; and 4) to provide best-in-class education to members and nonmembers. Genetics in Medicine, published monthly, is the official ACMG journal. ACMG's website (www.acmg.net) offers resources including policy statements, practice guidelines, educational programs and a 'Find a Genetic Service' tool. The educational and public health programs of the ACMG are dependent upon charitable gifts from corporations, foundations and individuals through the ACMG Foundation for Genetic and Genomic Medicine.

Raye Alford, PhDralford@acmg.net

View original content to download multimedia:http://www.prnewswire.com/news-releases/leading-experts-in-genetics-and-pregnancy-announce-the-creation-of-a-new-consortium-300999484.html

SOURCE American College of Medical Genetics and Genomics

Read more:
Leading Experts in Genetics and Pregnancy Announce the Creation of a New Consortium - Yahoo Finance

Harnessing Genetic Suppression to Treat Rare… – Labiotech.eu

Through quirks of genetics, some people are naturally resilient to heritable diseases. Thijn Brummelkamp, Managing Director and founder of the Dutch startup Scenic Biotech, explains how the company is using this genetic resilience to treat rare diseases and cancer.

Heritable diseases result from genetic mutations that cause essential proteins in the body to malfunction. For example, people with the condition NiemannPick type C have mutations in proteins involved in the transport of cholesterol in the cell. This makes cholesterol build up in the body and causes problems with walking and cognition.

However, some people with mutations that should cause disease show no sign of the illness. According to Brummelkamp who is also a Professor at the Netherlands Cancer Institute a big reason for this disease resistance is because of genes called genetic modifiers.

This explains why some people that have a mutation in the gene that causes the disease have more severe phenotypes than other family members may have, he told me.

Brummelkamp and co-founder Sebastian Nijman spun Scenic Biotech out of the Netherlands Cancer Institute and the University of Oxford in the UK in 2017. The companys preclinical pipeline is focused on identifying genetic modifiers that can suppress the effects of rare diseases in the lab, and then developing antibody or small molecule drugs to activate them in patients.

Typically, people have looked at the defective gene and tried to correct the gene or process, Brummelkamp said. In this case, this is a new class of drugs.

While it may sound promising, the task of finding genetic modifiers that delay disease also known as genetic suppressors is a huge one. First, there are thousands of rare diseases, each one with a very small pool of patients to study. Second, finding people with effective genetic suppressors for these diseases is tricky because many healthy people dont typically go for genetic screens.

For most human diseases, we do not know what the genetic suppressors are, explained Brummelkamp. Both clinical data and population genetics suggests that these genetic suppressors exist, but it has been really difficult to identify them.

Scenic Biotech uses single-cell screening in the lab to overcome this issue. The company takes billions of healthy human cells or cells containing mutations responsible for the disease of interest. For each healthy or diseased cell, Scenic uses a method called gene trapping to stop one of the genes in the genome from working, and uses fluorescent labeling to check how it affects the cells health. By doing this, the company can then build up a picture of which genes suppress the disease.

The idea is that we really get an overview of the genetics of a particular disease, so that is why were called Scenic, Brummelkamp said. We really hope to identify the scene that is relevant.

One big challenge to approaches like this one is that human cells contain two copies of each gene. These can mask mutations and make the analysis very complex. To address this, Scenic screens special human cancer-derived cells that only have one copy of each gene.

Scenic is currently focused on developing a treatment for NiemannPick type C disease, and has a list of potential suppressor genes that could be targets for new drugs. In addition, the company has identified a genetic modifier that could allow it to develop a cancer immunotherapy enhancing the effect of checkpoint inhibitors, which prevent cancer cells from evading the immune system.

Genetic modifiers are already being targeted by several biotechs. For example, the US company Maze Therapeutics raised an impressive 173M ($191M) Series A last year to screen genomic datasets for new genetic modifiers.

For Scenic Biotech, the presence of other companies in this space doesnt worry them. I dont believe that we will be all fishing in the same pool, Brummelkamp noted. This could be applied in oncology, it could be applied in common diseases, in rare diseases and, of course, there are many different disorders and ways to look at them and ways to correct them.

While the field of genetic modifiers in therapeutics is still emerging, investors are already sharing in Brummelkamps excitement, demonstrated by Scenic Biotechs 6.5M Series A raised early after founding.

We did not have a difficult time finding excited investors to start Scenic and I think it was the concept and the opportunity, Brummelkamp told me. Its a timely moment now to identify these suppressors and see if we can develop them. It was a very risky and early idea but one with great potential.

Despite having founded two biotechs in his career Scenic Biotech and the Austrian company Haplogen in 2010 Brummelkamp spends the majority of his working life in his academic lab, limited to one day per week at Scenic Biotech. As a scientist, results are always exciting, whether they come from the Scenic side or the academic side, he told me.

Nonetheless, Brummelkamp is enthusiastic about spinning out new companies based on his discoveries, bridging the gap between academic discovery and commercialization.

I think its very exciting. Ive learned so much more in the last two years and also from my previous experience in biotech, than I could imagine, he said. It really gives me a bit of a better understanding of the biology and, on the other hand, of the challenges in biotech and pharma.

Images from E. Resko and Shutterstock

Visit link:
Harnessing Genetic Suppression to Treat Rare... - Labiotech.eu

Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies – Science…

INTRODUCTION

The date palm (Phoenix dactylifera), a dioecious species in the Arecaceae (formerly Palmae) family has a historical distribution stretching from Mauritania in the west to the Indus Valley in the east (1). A major fruit crop in hot and arid regions of North Africa and the Middle East and one of the earliest domesticated tree crops, archaeobotanical records suggest that the earliest exploitation and consumption of dates is from the Arabian Neolithic some 7000 years before the present (yr B.P.) (1). Evidence of cultivation in Mesopotamia and Upper Arabian Gulf approximately 6700 to 6000 yr B.P. support these centers as the ancient origin of date palm domestication in this region, with a later establishment of oasis agriculture in North Africa (1, 2).

The current date palm germplasm is constituted by two highly differentiated gene pools: an eastern population, consisting of cultivars extending from the Middle East and Arabian Peninsula to northwest India and Pakistan and a western population covering North Africa and sub-Saharan Africa (3, 4). Introgressive hybridization by a wild relative in North African date palms has been proposed as a source of this differentiation (2).

Date palms in the southern Levant (modern-day Israel, Palestine, and Jordan), situated between eastern and western domestication areas, have historically played an important economic role in the region and were also of symbolic and religious significance (5). The Kingdom of Judah (Judea) that arose in the southern part of the historic Land of Israel in the 11th century BCE was particularly renowned for the quality and quantity of its dates. These so-called Judean dates grown in plantations around Jericho and the Dead Sea were recognized by classical writers for their large size, sweet taste, extended storage, and medicinal properties (5). While evidence suggests that Judean date culture continued during the Byzantine and Arab periods (4th to 11th century CE), further waves of conquest proved so destructive that by the 19th century, no traces of these historic plantations remained (5).

In 2008, we reported the germination of a 1900-year-old date seed (6) recovered from the historical site of Masada overlooking the Dead Sea. In the current study, six additional ancient date seeds from archaeological sites in the Judean desert were germinated, bringing to seven the number of ancient genotypes genetically analyzed using molecular markers. In addition, morphometric analysis was used to compare the size and shape of ungerminated ancient date seeds with modern varieties and wild dates.

This study, which confirms the long-term survival of date palm seeds, provides a unique opportunity to rediscover the origins of a historic date palm population that existed in Judea 2000 years ago. The characteristics of the Judean date palm may shed light on aspects of ancient cultivation that contributed to the quality of its fruit and is thus of potential relevance to the agronomic improvement of modern dates.

Of the hundreds of ancient date seeds and other botanical material recovered from excavations carried out in the Judean desert between 1963 and 1991 (7, 8) (fig. S1), 32 well-preserved date seeds from the archaeological sites of Masada, Qumran, Wadi Makukh, and Wadi Kelt were planted in a quarantine site at Kibbutz Ketura (table S1). Of these, six ancient seeds germinated and were further identified by the following monikers: Masada: Adam; Qumran: Jonah, Uriel, Boaz, and Judith; and Wadi Makukh: Hannah (Figs. 1 and 2).

(A) Adam, (B) Jonah, (C) Uriel, (D) Boaz, (E) Judith, (F) Hannah, and (G) HU37A11, an unplanted ancient date seed from Qumran (Cave FQ37) used as a control. Scale bars, 0.5 cm (A, no bar size as unmeasured before planting). Photo credit: Guy Eisner.

Ages in months at time of photograph (A to C) Adam (110 months), Jonah (63 months), and Uriel (54 months). (D to F) Boaz (54 months), Judith (47 months), and Hannah (88 months). Photo credit: Guy Eisner.

On visual inspection, no specific observation linked the ability of these seeds to germinate compared with those that failed to germinate. Before planting, the ancient date seeds had been weighted, and their length was measured, with the exception of those seeds from Masada, (including Adam, the germinated seed), which unfortunately were not measured (table S1). No statistically significant differences were found between germinated and ungerminated seeds in either weight {1.67 0.55 and 1.61 0.29 g, respectively [Students t test (t) = 0.348, degree of freedom (df) = 24, P = 0.731]} or length [27.60 3.7 and 26.8 3.7 mm, respectively (t = 0.455, df = 24, P = 0.653)].

Radiocarbon ages are shown (Fig. 3 and table S2) for ancient date seeds germinated in the current study and also for the date seed (seed 3/Methuselah) germinated in our previous work (6). These ages were obtained from seed shell fragments found clinging to the rootlets of germinated seedlings during their transfer into larger pots (3 to 17 months of age). The values were recalculated to take into account contamination by modern carbon incorporated during seedling growth previously shown to reduce measured radiocarbon age by approximately 250 to 300 years, equivalent to 2 to 3% modern carbon (table S2) (6). On the basis of these calculations, Methuselah germinated in our previous study (6) and Hannah and Adam in the current study are the oldest samples (first to fourth centuries BCE), Uriel and Jonah are the youngest (first to second centuries CE), and Judith and Boaz are intermediate (mid-second century BCE to mid-first century CE) (Fig. 3).

Eighteen ancient date seeds that failed to germinate were recovered from the potting soil and compared with modern seeds derived from 57 current date palms of which 48 are cultivated varieties and 9 are wild individuals (9, 10). Ancient seeds were significantly larger in terms of both length and width (length, 27.62 3.96 mm; width, 10.38 0.71 mm) than both current cultivar (length, 20.60 4.70 mm; width, 8.33 1.02 mm) and wild date palm seeds (length, 16.69 3.39 mm; width, 7.08 0.46 mm) (Fig. 4). Ancient seeds were, on average, 27.69% wider (t = 11.923, df = 18.391, P = 2.157 1010) and 38.37% longer than the combined current samples (wild and cultivated) (t = 7.422, df = 17.952, P = 3.564 107).

Length (millimeters) (left) and width (millimeters) (right) of ancient date seeds that failed to germinate (n = 18), 9 current wild individuals (n = 180), and 48 cultivated P. dactylifera varieties (n = 928). Letters a, b, and c above boxes indicate Tukeys groups derived from HSD.test function and R package agricolae.

When only compared to the cultivars, the ancient date seeds were still larger: 24.55% wider (t = 11.923, df = 18.391, P = 2.157 1010) and 34.06% longer (t = 7.422, df = 17.952, P = 3.564 107). However, the contrast in seed size is even more marked when comparing ancient seeds and current wild date palms: The Judean date palm seeds were, on average, 39.55% wider (t = 19.185, df = 18.471, P = 5.943 1014) and 65.48% longer than current wild samples (t = 11.311, df = 19.574, P = 2.472 1010) (tables S3 and S4).

Analysis of seed shape diversity in current and ancient date seeds using principal components analysis (PCA) (dudi.pca function) performed on seed outlines confirmed visual observation that modern cultivated seeds were more diverse in size than ancient ones but did not differentiate between the two groups [multivariate analysis of variance (MANOVA), P > 0.05]. Ancient seeds displayed an elongated shape similar to current cultivated samples (fig. S2).

The sex of the six germinated ancient date seedlings in the current study identified using three sex-linked simple sequence repeats (SSR) (11) were as follows: Judith and Hannah are female genotypes and Uriel, Jonah, Boaz, Adam, and Methuselah (seed 3) from the previous study (6) are male genotypes. Through microsatellite genotyping, three levels of genetic inheritance were investigated to highlight geographic origins (Fig. 5, A and B): (i) inheritance transmitted by both parents to progeny, obtained by microsatellite markers showing western and eastern patterns of the ancient seeds genomes (4), as presented in structure analysis and pie charts (Fig. 5A); (ii) inheritance transmitted from mother to progeny through the chloroplast genome, reflecting maternal lineage origin by reporting chloroplastic minisatellite eastern or western alleles (Fig. 5B, arrow) (12); and (iii) inheritance transmitted from father to son through the Y chromosome, reflecting paternal lineage origin by reporting male specific sex-linked eastern or western alleles (Fig. 5B, arrow) (11).

(A) Structure analysis results are shown for modern and ancient western (green) and eastern (orange) genotype contributions. Pie charts highlight eastern (orange) and western (green) ancient seeds nuclear genomes contributions. (B) Ancient seeds maternal and paternal lineages origin. Arrows represent clonally transmitted parental information, with maternal (chloroplastic) and paternal (Y chromosome) from western (green) and eastern (orange) origins.

Structure analysis revealed that distribution of the germinated ancient date seeds was within previously described eastern and western date palm gene pools (Fig. 5A). Methuselah, Hannah, and Adam are the most eastern genotypes, although they also show ancient western contributions requiring numerous generations and highlighting ancient crosses. Boaz and Judith are the most admixed, with almost equal eastern and western contributions reflecting more recent crossings. Jonah and Uriel are the most western genotypes with the most western parental lineages (Fig. 5B).

To shed light on genetic diversity of the ancient dates, basic population genetic parameters were estimated and compared to modern reference collections (tables S5 and S6). The ancient genotypes showed an allelic richness value (Ar) (i.e., the number of alleles) of 3.59, a relatively high diversity for such a small sample size (seven genotypes) compared to values of other countries sampled (table S6). Genetic relationships between the ancient date and current varieties (Fig. 6 and table S7) show Methuselah and Adam close to eastern modern varieties Fardh4 and Khalass, respectively, assigned to current Arabian Gulf varieties; Hannah and Judith related to modern Iraqi varieties Khastawi and Khyara, respectively; and Uriel, Boaz, and Jonah, the most western genotypes, related to modern Moroccan varieties, Mahalbit, Jihel, and Medjool, respectively.

Modern varieties from United Arab Emirates (light orange), Iraq (red), Tunisia (blue), Morocco (light green), Egypt (dark green), and ancient genotypes (purple).

In the current study, six ancient date seeds, in addition to the seedling obtained in our previous study (6), were germinated. All the seeds were approximately 2000 years old and had been previously recovered from archaeological sites in the Judean desert, a rain shadow desert of ca. 1500 km2 located between the maquis-covered Judean Hills and the Dead Sea (fig. S1).

Little is known about the mechanisms determining seed longevity; however, it has been related to the ability to remain in a dry quiescent state (13). In the current study, low precipitation and very low humidity around the Dead Sea could have contributed to the longevity of the ancient date seeds, which may be an adaptation of date palms to extreme desert conditions fostering seed dispersion. Their remarkable durability, however, may also be connected to other extreme environmental conditions in this area; at 415 m below mean sea level, the Dead Sea and its surroundings have the thickest atmosphere on Earth, leading to a unique radiation regime and a complex haze layer associated with the chemical composition of the Dead Sea water (14). However, since no visible evidence in the current study was linked to seed germination and, accordingly, to their long term survival, further investigations are needed to understand the basis of date palm seed longevity.

Among the worlds oldest cultivated fruit trees, P. dactylifera is the emblematic of oasis agriculture and highly symbolic in Muslim, Christian, and Jewish religions (5). Closely connected to the history of human migrations, the first cultivated varieties of P. dactylifera are thought to have originated around Mesopotamia and the Upper Arabian Gulf some 6700 to 6000 yr B.P. (1, 2, 10). In Judea, an ancient geopolitical region that arose during the 11th century BCE in the southern part of the historic Land of Israel, and situated at the cross roads of Africa, Asia, and Europe, the origins of date palm cultivation are unknown. However, from historical records, a thriving Judean date culture was present around Jericho, the Dead Sea, and Jordan Valley from the fifth century BCE onward, benefitting from an optimal oasis agriculture environment of freshwater sources and subtropical climate (5).

Described by classical writers including Theophrastus, Herodotus, Galen, Strabo, Pliny the Elder, and Josephus, these valuable plantations produced dates attributed with various qualities including large size, nutritional and medicinal benefits, sweetness, and a long storage life, enabling them to be exported throughout the Roman Empire (5, 15, 16). Several types of Judean dates are also described in antiquity including the exceptionally large Nicolai variety measuring up to 11 cm (5, 15, 16).

In the current study, ancient seeds were significantly longer and wider than both modern date varieties and wild date palms. Previous research has established that both fruits and seeds are larger in domesticated fruit crops compared with their wild ancestors (17), suggesting that the ancient seeds were of cultivated origin (9, 18), most likely originating from the regions date plantations. Furthermore, an increase in seed size has been linked allometrically to an increase in fruit size (19), corroborating the historical descriptions of the large fruits grown in this region.

Genotypes of the germinated ancient date seedlings cover a large part of present-day date palm distribution area, findings that reflect the variety, richness, and probable influences of the historic Judean date groves. Microsatellite genotyping shows a relatively high diversity, with eastern and western gene pool contributions, allelic richness, and genetic proximity to current varieties cultivated in the Arabian Peninsula, Iraq, and North Africa. Although the sample size is small, a predominance of eastern female lineages (six of seven) indicates that eastern female varieties grown from local germplasm were probably clonally propagated from offshoots to maintain desirable fruit qualities. Male lineages, mainly western (four of five), suggest that genetically different or foreign males were used for pollination. This assumption is supported by first century texts, indicating that substantial knowledge existed in ancient Judea 2000 years ago regarding the most suitable males for pollination of female date palms (20).

Our results reinforce the historical narrative that a highly sophisticated domestication culture existed in ancient Judea. Local farmers with an interest in maintaining genetic diversity in their date plantations and anthropogenic pressures leading to selection on fruit dimension and other desirable traits used cross-breeding with foreign (genetically different) males to develop a rich collection of varieties.

These findings suggest that Judean date culture was influenced by a variety of migratory, economic, and cultural exchanges that took place in this area over several millennia.

In Israel, the oldest remains of P. dactylifera are wood specimens 19,000 yr B.P. from Ohalo II site on the Sea of Galilee (21). Recovery of carbonized date seeds from Chalcolithic and Early Bronze Age sites (4500 to 2900 BCE) in the Judean desert, Jordan Valley, and Jericho (22, 23) and early Iron Age sites in Israel (12th to 11th century BCE) (24) suggest that human exploitation and consumption of dates occurred at this time. However, it is unclear whether these samples, which are relatively few in number and of very small size (22, 25, 26), are derived from ancient wild populations, as suggested by morphometric studies of modern wild date populations (18) or represent an early stage of the domestication process.

In the current study, although the sample size is too small to claim a trend, on a gradient from east to west genetic contributions, the older the germinated seeds are on radiocarbon dating (Fig. 3), the more eastern is the nuclear genome (Fig. 5, A and B ). In this respect, Methuselah, Adam, and Hannah (first to fourth centuries BCE) have a predominantly eastern nuclear genome and eastern maternal lineage, their relationship to modern varieties from the Arabian Gulf and Iraq suggesting that they belong to the same eastern genetic background.

The P. dactylifera cultivated by the inhabitants of Judea at that time therefore appears to be from the eastern gene pool, possibly growing locally and related to oasis populations, of which relict populations were recently found in Oman (9).

Elite female cultivars may also have been introduced to ancient Israel from these regions, consistent with a pattern of human intervention and possibly active acquisition of date palm varieties. Established trade links are documented with Arabia and the Persian Gulf from at least the 12th century BCE (27). Babylonian date palm cultivation in southern Mesopotamia (most of modern Iraq), originating some 6000 yr B.P. (1, 2), used deportees from ancient Judea following its conquest in the sixth century BCE (28). After the collapse of the Neo-Babylonian Empire, returning exiles may have brought this specialized knowledge and selected cultivars back to Judea; a date variety Taali cultivated in both Judea and Babylon is mentioned in the Talmud (29).

Western genetic admixtures in the germinated seedlings and their proximity to current cultivated date varieties from Morocco also suggest that ancient Judean date palms were the result of germplasm exchanges with this area and of multiple crosses. Introgression of eastern genomes into western ones are common, detected in varieties from Algeria, Morocco, Mauritania, and particularly east-west junction areas like Egypt (1, 2, 4, 30). In the latter, eastern contributions from the Persian Gulf, detected in ancient Egypt date seeds from 1400 BCE to 800 CE, reveal a chronological pattern of change in agrobiodiversity and the possible emergence of a western form in the Roman period (10).

Introgression of date palm western genomes into eastern ones, however, is far lower (1, 2, 4, 12), their presence in the current study reflecting west to east exchanges.

The origins of these exchanges are unclear; however, archaeological evidence indicates that North Africa, Near East, and Mediterranean cultures were clearly linked during the Neolithic in the southern Levant (approximately 11,700 to 7300 B.P.) and were associated in Jericho with the earliest origins of food production and fundamental changes in human subsistence strategies (31).

Phoenicia, a maritime trading nation occupying the coastal areas of modern northern Israel, Lebanon, and Syria (1500 to 300 BCE), was also historically associated with cultivation and trade of date palms (32). We can speculate that later west to east germplasm exchanges to this region may have been associated with domesticated varieties originating in Phoenician City States in North African (e.g., Carthage in present-day Tunisia) (32), where oasis agriculture appeared relatively late in the archaeological record (3).

The most western genotypes in the current study (Uriel and Jonah) are also the youngest seeds (mid-first to mid-second CE), coinciding with established trade routes linking this region to North Africa and supporting evidence for date consumption in the latter 2000 years ago (2, 3). This period coincides with Judeas well-documented wars against Rome (66 to 73 CE and 132 to 136 CE) and deportation and displacement of its population (16). The ancient seeds in the current study were found in the Judean desert, historically a place of refuge due to its steep cliffs and inaccessible caves (16, 23). The loss of political autonomy and the final collapse of Judea have been postulated as causing major disruption to labor intensive practices associated with date cultivation (33). Elite cultivars no longer conserved by vegetative propagation (offshoots) were gradually replaced by seedling date palms producing fruits displaying considerable variation within the progeny. Although P. dactylifera can live for more than 100 years (33) and date groves in this region are thought to have persisted for several more centuries, they were already rare by the 11th century and had been entirely replaced by seedling populations or feral, wild trees producing only low-quality fruit (5, 33), by the 19th century.

The current study sheds light on the origins of the Judean date palm, suggesting that its cultivation, benefitting from genetically distinct eastern and western populations, arose from local or introduced eastern varieties, which only later were crossed with western varieties. These findings are consistent with Judeas location between east-west date palm diversification areas, ancient centers of date palm cultivation, and the impact of human dispersal routes at this crossroads of continents.

Given its exceptional storage potentialities, the date palm is a remarkable model for seed longevity research. Investigations on the molecular mechanisms involved in long-term protection in the dried state have important implications on plant adaptation to changing environments and for biodiversity conservation and seed banking. As new information on specific gene-associated traits (e.g., fruit color and texture) (3) is found, we hope to reconstruct the phenotypes of this historic date palm, identify genomic regions associated with selection pressures over recent evolutionary history, and study the properties of dates produced by using ancient male seedlings to pollinate ancient females. In doing so, we will more fully understand the genetics and physiology of the ancient Judean date palm once cultivated in this region.

The objectives of this study and its design were as follows:

1) The origin and selection of ancient date seeds derived from archaeological sites in the Judean desert.

2) The germination of ancient date seeds in a quarantine site following a preparatory process.

3) Radiocarbon dating and recalculation of calendar ages of germinated ancient date seeds based on seed shell fragments and selected controls.

4) Seed morphometric studies: Comparing ungerminated ancient date seeds with seeds from modern date varieties and wild date palms.

5) Microsatellite analysis of seven germinated date seedlings.

(statistical methods are included in the respective sections)

The ancient date seeds in the current study were obtained from botanical material recovered from archaeological excavations and surveys carried out at the following sites in the Judean desert between 1963 and 1991 and stored at room temperature since their discovery (fig. S1).

1) Masada: An ancient fortress/palace complex built by King Herod the Great (37 to 4 BCE) at the southern end of the Dead Sea on the site of an earlier Hasmonean fortification (141 to 37 BCE) (7). The site, built on a plateau approximately 400 m above the Dead Sea, was first excavated by the late Y. Yadin (Institute of Archaeology, Hebrew University, Jerusalem, Israel) from 1963 to 1965 (7). Bioarchaeological material found at this time included large numbers of date seeds buried under rubble close to the remains of an area identified as a food storage site.

2) Qumran: An archaeological site situated at the northern end of the Dead Sea including an ancient settlement dating from the second century BCE destroyed in 68 CE and a number of caves located in the surrounding cliffs and marl terrace associated with the 1947 discovery of the Dead Sea Scrolls. Later excavations and surveys of caves in this area, carried out from 1986 to 1989, by J. Patrich and B. Arubas (The Institute of Archaeology, The Hebrew University, Jerusalem, Israel) (8) included the following: Qumran Cave 13: artifacts found included potsherds from period 1b Qumran (until 31 BCE), numerous date stones and dried dates in a pit, and a pottery juglet dated to approximately 67 to 79 CE containing an unknown viscid substance and wrapped in palm fibers (used as a control in radiocarbon analysis in the current study) (see below); and Qumran Cave FQ37: containing a number of date stones and first to second CE century artifacts from the late Second Temple period (60 to 70 CE) and Roman period.

3) Wadi Makukh: A winter water channel in the Judean desert surrounded by high cliffs and containing a number of caves, which were surveyed from 1986 to 1989 (above). Date seeds found in caves 1, 3, 6, and 24 in this area were included in the current study; Cave 1 was found to include a Chalcolithic burial site (fifth millennium B.P.) containing human skeletons as well as Roman period artifacts but with signs of considerable disturbance by grave robbers (8).

4) Wadi Kelt: A winter water channel running from Jerusalem to the Dead Sea containing a number of caves (8). Date seeds from Masada were provided to S.S. by M. Kislev (Faculty of Life Sciences, Bar Ilan University), initially in 2005 (6) and again in 2007 (germinated in the current study), following permission by the late E. Netzer (Department of Archaeology, Hebrew University of Jerusalem). Date seeds from Qumran, Wadi Makukh, and Wadi Kelt were provided to S.S. by J. Patrich in 2009.

Out of a collection of many hundreds of ancient date seeds, a total of 34 were selected for the current study based on the specimens appearing visually to be intact whole seeds, in good condition, and without holes. They included Masada (8 seeds), Qumran (18 seeds), Wadi Makukh (7 seeds), and Wadi Kelt (1 seed). Ancient date seeds selected above were identified by code numbers and photographed, and measurements of weight and length were made before planting (with the exception of Masada seeds, which unfortunately were not measured) (table S1). One date seed, from the Qumran excavations (HU 37 A11), was selected as a control and left unplanted (table S1).

The remaining 33 seeds were subjected to a preparatory process to increase the likelihood of seed germination using the following established methods to sprout delicate germplasm (34): seeds were initially soaked in water for 24 hours and in gibberellic acid (5.19 mM) (OrthoGrow, USA) for 6 hours to encourage embryonic growth. This was followed by Hormoril T8 solution (5 g/liter) (Asia-Riesel, Israel) for 6 hours to encourage rooting and KF-20 organic fertilizer (10 ml/liter) (VGI, Israel) for 12 hours. All solutions were maintained at 35C.

Following the above procedure, one seed was found to be damaged and not planted. The remaining 32 seeds were separately potted in fresh sterile potting soil, 1 cm below the surface, and placed in a locked quarantine site at the Arava Institute of Environmental Sciences, Kibbutz Ketura, located in the southern Israel. Eight weeks after germination and periodically afterward, KF-20 (10 ml/liter) and iron chelate (10 g/liter) were added to the seedlings. Irrigation used desalinated water, as our previous study on germinating the first ancient date seed (6) indicated that using the regions highly mineralized water produced tip burn (darkening and drying of leaves).

Radiocarbon ages in the current study were obtained for the following bioarchaeological material: (i) fragments of seed shell coat found clinging to the rootlets of six germinated ancient date seeds when these seedlings were transferred into larger pots, (ii) an unplanted ancient date seed from cave 37 Qumran (HU37 A11) (used as a control), and (iii) part of an ancient palm frond surrounding an oil juglet found in Qumran Cave 13 (used as a control). Radiocarbon ages of seed shell fragments from the germinated seedlings were recalculated to take into account modern carbon incorporated during seedling growth (6).

1) Methodology: Nonorganic carbon (carbonates) were removed from all samples with 10% HCl under reduced pressure followed by repeated washes in deionized water until neutral (pH 7). Organic acids formed during the rotting process were removed with 10% NaOH followed by repeated washes (as above). To prevent absorption of atmospheric CO2, all samples were placed again in 10% HCl and then washed in deionized water until neutral. To remove chemicals used in the germination process, a 7-mm-long shell fragment from the germinated date seed weighing 80 mg was cut into six cubes of 8 mm3 and subjected to an additional series of four boil washes. All samples were heated in an evacuated sealed quartz tube with CuO as an oxygen source. The resulting CO2 was mixed with hydrogen in the ratio 2.5:1 and catalytically reduced over cobalt powder at 550C to elemental carbon (graphite). This mixture was pressed into a target and the 14C:12C ratio (for radiocarbon age) measured by accelerator mass spectrometry at the Institute for Particle Physics of the Swiss Federal Institute of Technology Zurich (ETHZ).

2) Calendar age: Calendar age was obtained using the OxCal 4.3 calibration program based on the latest IntCal 13 calibration curve (35). Calibrated calendar ages can be found with a probability of 68.3% in the 1-range and with a probability of 95.4% in the 2-range (table S2). The probability distribution P of individual ages is given for each sigma range. The 14C activity is reported as pMC (percentage of modern carbon) and corresponds to the ratio of the activity of the sample to the corrected activity of the oxalic acid standard, which has an age of 0 yr B.P.

3) Calculation of correction for pMC: The effect of contamination by modern carbon incorporated during seedling growth previously shown in our first germination of an ancient date seed to reduce measured age by 250 to 300 years (equivalent to 2 to 3% pMC) (6) was calculated using the following three groups based on the source of the ancient seeds in both the current and previous studies:

(i) Masada: Adam (current study), Methuselah (seed 3), and seed 1 [both from previous study (6) in which seed 1 was used as a control].

(ii) Qumran Cave 13: Judith and an ancient palm frond (used as a control)

(iii) Qumran Cave 37: Boaz, Jonah, Uriel, and seed HU37A11 (used as a control)

The germinated ancient seed Hannah from Wadi Makhukh was not assigned to a group due to the absence of a suitable control and considerable disruption to the site.

Using as age-controls the ancient palm frond (Qumran Cave 13), seed HU37A11 (Qumran Cave 37) from the current study and seed 1 (Masada) from the previous study (6), we assumed that a positive pMC difference between the germinated seeds and control sample could be attributed to modern carbon that was absorbed during germination. Ages of the germinated seeds were therefore recalculated (assuming that the measurement error remains unchanged) by adjusting the measured age to the control sample. For Hannah since no control exists, an average deviation (derived from the other samples) was taken into account.

Comparison of ancient date seeds that failed to germinate with modern date seeds. This was performed on the following groups:

1) Modern date seed (P. dactylifera) samples (n = 56): Being either from cultivated varieties (n = 47) or uncultivated and possibly wild individuals (n = 9) (9). Seeds from these sources (total n = 1108) were used as a current referential for seed morphometric analysis. The cultivated modern samples originated from 11 countries spanning date palm distribution from Spain to North Africa to the Middle-East. The candidate wild date palms originated from Oman and have been hypothesized as wild date palms based on seed shape, seed size (18), and genetic studies based on microsatellite and whole-genome resequencing data (9).

2) Ancient date seeds (n = 18): Of 26 ancient date seeds obtained from Qumran, Wadi Makukh, and Wadi Kelt archaeological sites (described above) that had been planted in the quarantine site, 21 failed to germinate and were retrieved from the potting soil. Of these, three were discarded as they had fragmented and were in poor condition. The remaining 18 retrieved ancient date seeds together with modern reference seeds (described above) were rephotographed on dorsal and lateral sides, and measurements of length and width were remade (table S3) [Neither current or previous (6) ancient date seeds from Masada that failed to germinate were used in the morphometric study as these seeds were not retrieved from the potting soil].

The following statistical analyses were performed using R software (36).

1) Size analysis of modern seeds: The length and width of a total of 1108 seeds obtained from 47 current cultivated varieties (928 seeds) and 9 current wild individuals (180 seeds) were measured using ImageJ (37) following the protocol previously established by Gros-Balthazard et al. (18). The thickness was not measured since it is highly correlated with width (18).

2) Comparison of seed size between current and ancient samples: Measurements for current varieties were compared with those measured for the ancient date seeds using boxplots and Students and Tukeys tests (table S4).

3) Analysis of seed shape diversity in current and ancient date seeds: PCA (dudi.pca function) was performed on seed outlines assessed by Fourier coefficients, a morphometric method applied to outline analysis.

DNA preparation. DNA of six ancient date seedlings from the current study and one (Methuselah) from the previous study (6) was analyzed. A set of 19 SSR was used for genotyping as described by Zehdi-Azouzi et al. (4). Gender was determined using date palm sex-linked microsatellite markers (11). Maternal lineages were traced back using the plastid intergenic spacer psbZ-trnf minisatellite (12, 38). Paternal lineages were studied through Y haplotypes using the three sex-linked SSRs (mPdIRDP80, mPdIRDP50, and mPdIRDP52) (11).

Total cellular DNA was extracted from lyophilized leaves using the TissueLyser and the DNeasy Plant Mini Kit (QIAGEN SA, Courtaboeuf, France) according to the manufacturers instructions. After purification, DNA concentrations were determined using a GeneQuant spectrometer (Amersham Pharmacia Biotech, France). The quality was checked by agarose minigel electrophoresis. The resulting DNA solutions were stored at 20C.

Amplification and genotyping. Polymerase chain reactions were performed in an Eppendorf (AG, Hamburg, Germany) thermocycler. Reaction was performed in 20 l and contained 10 ng of genomic DNA, 10 reaction buffer, 2 mM MgCl2, 200 M deoxynucleotide triphosphates, 0.5 U polymerase, and 0.4 pmol of the forward primer labeled with a 5M13 tail, 2 pmol of the reverse primer, and 2 pmol of the fluorochrome-marked M13 tail and MilliQ water. A touchdown polymerase chain reaction (PCR) was carried out with following parameters: denaturation for 2 min at 94C, followed by six cycles of 94C for 45 s, 60C for 1 min, and 72C for 1 min; then 30 cycles of 94C for 45 s, 55C for 1 min, and 72C for 1.5 min; then 10 cycles of 94C for 45 min, 53C for 1 min, 72C for 1.5 min; and a final elongation step at 72C for 10 min. PCR products were analyzed using an ABI 3130XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Allele size scoring was performed with GeneMapper software v3.7 (Applied Biosystems).

Genetic analyses. The ancient genotypes were compared to a reference matrix (90 genotypes) containing genotyping data on current date palm varieties covering the two genetic pools defined by Zehdi-Azouzi et al. (4) and including 35 samples from the eastern pool and 55 samples from the western pool (table S5). The number of alleles per group (NA), the number of alleles with a frequency higher than 5% (NA,P), and the observed (Ho), the expected (He) heterozygosities, and the fixation index values (FIS) were estimated using the GenAlEx 6.5 program (table S6). The allelic richness of each group was also calculated via the divBasic function implemented in the R package diversity (table S6) (39).

The hierarchical classifications were generated using PHYLIP package by calculating Cavalli-Sforza and Edwards distances (40) between ancient genotypes and current varieties (table S7). The obtained distance was used to construct the dendrogram using the neighbor-joining algorithm (41). The tree was drawn using DARwin software (42).

The membership probabilities of the ancient genotypes were identified by using a model-based clustering algorithm implemented in the computer program STRUCTURE v.2.3.4 (43). This algorithm identifies clusters (K) with different allele frequencies and assigns portions of individual genotypes to these clusters. It assumes the Hardy-Weinberg equilibrium and linkage equilibrium within clusters. The STRUCTURE algorithm was run without previous information on the geographic origin of the accessions using a model with admixture and correlated allele frequencies with 10 independent replicate runs for each K value (K value ranging from 1 to 6). For each run, we used a burn period of 10,000 iterations followed by 1 million iterations. The optimal number of clusters was assigned by using the run with the maximum likelihood validated with an ad hoc quantity based on the second-order rate of change in the log probability of data between different K values (fig. S3).The optimal alignment of the independent iterations was obtained by CLUMPP v.1.1 implemented in the Pophelper software v.1.0.10 (44); Pophelper v.1.0.10 (44) was also used to plot the results for the optimal K.

Acknowledgments: We thank J. Patrich and the late E. Netzer for making available ancient date seeds from Judean desert excavations; R. Krueger (USDA-ARS, USA) for providing some current date palm varieties; and S. Zehdi (Faculty of Sciences, University of Tunis El Manar, Tunisia), A. Lemansour (UAEU, DPDRUD, United Arab Emirates), M. A. Elhoumaizi (Sciences Faculty, Morocco), and C. Newton for allowing the use of genotyping data on current date palm varieties in the reference matrix. M. Collin is acknowledged for the help in the figure preparation and T. Bdolah Abraham for the help in statistics. O. Fragman-Sapir is acknowledged for identification of ancient date seeds and C. Yeres and A. Rifkin for information on Midrashic and Talmudic Jewish source material. Funding: The study was supported by donations to NMRC from The Charles Wolfson Charitable Trust (UK), G. Gartner and the Louise Gartner Philanthropic Fund (USA), and the Morris Family Foundation (UK). Author contributions: S.S. initiated, designed, and coordinated the study, procured ancient date samples, researched historical and archaeological information and integrated it with scientific findings, and wrote the paper. E.C. and N.C. performed genetic analyses on germinated seedlings. E.S. germinated ancient date seeds. M.E. performed radiocarbon analysis. M.G.-B., S.I., and J.-F.T. performed morphometric analysis. F.A. supervised genetic analyses and with E.C., M.G.-B., and M.E. helped write the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Continued here:
Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies - Science...

Study sheds new light on genetic relationship between three mood disorders – News-Medical.net

Researchers shed new light on the genetic relationship between three mood disorders associated with depression--major depression and bipolar disorder types 1 and 2, in a new study in the journal Biological Psychiatry, published by Elsevier.

"The clearest findings are a genetic distinction between type 1 bipolar and type 2 bipolar, and the greater similarity of type 2 bipolar to major depressive disorder," said first author Jonathan Coleman, PhD, a statistical geneticist and postdoctoral fellow in the lab of senior author Gerome Breen, PhD at the Institute of Psychiatry, Neuroscience, and Psychology at Kings College London, UK.

Both types of bipolar disorder used to be referred to as 'manic-depressive disorder'. Mania is a behavioral state associated with behavioral activation, euphoric or irritable mood, reduced need for sleep, impulsive behavior, impaired judgement, racing disorganized thoughts, impulsive behaviors, and frequently strongly held false beliefs (delusions) or hallucinations. Bipolar disorder type 1 is associated with mania and depression, while bipolar 2 is predominately associated with depression marked by mild symptoms reminiscent of mania, called hypomania.

The insights came from several extremely large datasets analyzed together. For their meta-analysis, Coleman, Breen and their co-authors combined genome-wide association studies from three large datasets of people with major depression and bipolar disorder to evaluate shared and distinct molecular genetic associations. Most of the data came from the large international Psychiatric Genomics Consortium. Additional data came from the UK Biobank, a major health resource established by the Wellcome Trust, and the online genetic service platform, 23andMe.

There are significant racial and ethnic differences in the findings from genome-wide association studies (GWAS). The findings of this study pertain only to people of European ancestry and findings might be different in other groups.

The authors also report that the genetic risk for these disorders was predictive of other traits as well. For example, the genetic risk for bipolar disorder was correlated with more educational attainment, while the heritable risk for major depressive disorder was associated with less education.

In the mouse brain, the authors also mapped the genetic risk for these disorders on to particular brain cell types using a sophisticated analytic strategy building on the pattern of genes expressed. They implicated serotonin neurons in the risk for both depression and bipolar disorder, while bipolar disorder distinctively involved GABA and glutamate neurons (nerve cell types also implicated in schizophrenia).

We have long known that mood disorders are highly heterogeneous and the boundaries between types of mood disorders are often difficult to define clinically. This new study suggests that there are aspects of genetic risk, and presumably brain function, that link forms of mood disorders, but there are also distinctions that may shed light on subtypes of depression that may have important implications for treatment."

John Krystal, MD, editor of Biological Psychiatry

Ultimately, the researchers want to develop clinical tools to help predict if a first episode of depression is likely to persist as a disorder or progress into bipolar disorder. "Genetic data won't ever replace clinical insight, but it might be a useful addition to clinical models," said Coleman.

Source:

Journal reference:

Colemanan, J.R.I., et al. (2019) The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry. doi.org/10.1016/j.biopsych.2019.10.015.

More here:
Study sheds new light on genetic relationship between three mood disorders - News-Medical.net