When he was two years old, Ben stopped seeing out of his left eye. His mother took him to the doctor and soon discovered he had retinal cancer in both eyes. After chemotherapy and radiation failed, surgeons removed both his eyes. For Ben, vision was gone forever.
But by the time he was seven years old, he had devised a technique for decoding the world around him: he clicked with his mouth and listened for the returning echoes. This method enabled Ben to determine the locations of open doorways, people, parked cars, garbage cans, and so on. He was echolocating: bouncing his sound waves off objects in the environment and catching the reflections to build a mental model of his surroundings.
Echolocation may sound like an improbable feat for a human, but thousands of blind people have perfected this skill, just like Ben did. The phenomenon has been written about since at least the 1940s, when the word echolocation was first coined in a Science article titled Echolocation by Blind Men, Bats, and Radar.
How could blindness give rise to the stunning ability to understand the surroundings with ones ears? The answer lies in a gift bestowed on the brain by evolution: tremendous adaptability.
Whenever we learn something new, pick up a new skill, or modify our habits, the physical structure of our brain changes. Neurons, the cells responsible for rapidly processing information in the brain, are interconnected by the thousandsbut like friendships in a community, the connections between them constantly change: strengthening, weakening, and finding new partners. The field of neuroscience calls this phenomenon brain plasticity, referring to the ability of the brain, like plastic, to assume new shapes and hold them. More recent discoveries in neuroscience suggest that the brains brand of flexibility is far more nuanced than holding onto a shape, though. To capture this, we refer to the brains plasticity as livewiring to spotlight how this vast system of 86 billion neurons and 0.2 quadrillion connections rewires itself every moment of your life.
Neuroscience used to think that different parts of the brain were predetermined to perform specific functions. But more recent discoveries have upended the old paradigm. One part of the brain may initially be assigned a specific task; for instance, the back of our brain is called the visual cortex because it usually handles sight. But that territory can be reassigned to a different task. There is nothing special about neurons in the visual cortex: they are simply neurons that happen to be involved in processing shapes or colors in people who have functioning eyes. But in the sightless, these same neurons can rewire themselves to process other types of information.
Mother Nature imbued our brains with flexibility to adapt to circumstances. Just as sharp teeth and fast legs are useful for survival, so is the brains ability to reconfigure. The brains livewiring allows for learning, memory, and the ability to develop new skills.
In Bens case, his brains flexible wiring repurposed his visual cortex for processing sound. As a result, Ben had more neurons available to deal with auditory information, and this increased processing power allowed Ben to interpret soundwaves in shocking detail. Bens super-hearing demonstrates a more general rule: the more brain territory a particular sense has, the better it performs.
Recent decades have yielded several revelations about livewiring, but perhaps the biggest surprise is its rapidity. Brain circuits reorganize not only in the newly blind, but also in the sighted who have temporary blindness. In one study, sighted participants intensively learned how to read Braille. Half the participants were blindfolded throughout the experience. At the end of the five days, the participants who wore blindfolds could distinguish subtle differences between Braille characters much better than the participants who didnt wear blindfolds. Even more remarkably, the blindfolded participants showed activation in visual brain regions in response to touch and sound. When activity in the visual cortex was temporarily disrupted, the Braille-reading advantage of the blindfolded participants went away. In other words, the blindfolded participants performed better on the touch-related task because their visual cortex had been recruited to help. After the blindfold was removed, the visual cortex returned to normal within a day, no longer responding to touch and sound.
But such changes dont have to take five days; that just happened to be when the measurement took place. When blindfolded participants are continuously measured, touch-related activity shows up in the visual cortex in about an hour.
What does brain flexibility and rapid cortical takeover have to do with dreaming? Perhaps more than previously thought. Ben clearly benefited from the redistribution of his visual cortex to other senses because he had permanently lost his eyes, but what about the participants in the blindfold experiments? If our loss of a sense is only temporary, then the rapid conquest of brain territory may not be so helpful.
And this, we propose, is why we dream.
In the ceaseless competition for brain territory, the visual system has a unique problem: due to the planets rotation, all animals are cast into darkness for an average of 12 out of every 24 hours. (Of course, this refers to the vast majority of evolutionary time, not to our present electrified world.) Our ancestors effectively were unwitting participants in the blindfold experiment, every night of their entire lives.
So how did the visual cortex of our ancestors brains defend its territory, in the absence of input from the eyes?
We suggest that the brain preserves the territory of the visual cortex by keeping it active at night. In our defensive activation theory, dream sleep exists to keep neurons in the visual cortex active, thereby combating a takeover by the neighboring senses. In this view, dreams are primarily visual precisely because this is the only sense that is disadvantaged by darkness. Thus, only the visual cortex is vulnerable in a way that warrants internally-generated activity to preserve its territory.
In humans, sleep is punctuated by rapid eye movement (REM) sleep every 90 minutes. This is when most dreaming occurs. (Although some forms of dreaming can occur during non-REM sleep, such dreams are abstract and lack the visual vividness of REM dreams.)
REM sleep is triggered by a specialized set of neurons that pump activity straight into the brains visual cortex, causing us to experience vision even though our eyes are closed. This activity in the visual cortex is presumably why dreams are pictorial and filmic. (The dream-stoking circuitry also paralyzes your muscles during REM sleep so that your brain can simulate a visual experience without moving the body at the same time.) The anatomical precision of these circuits suggests that dream sleep is biologically importantsuch precise and universal circuitry rarely evolves without an important function behind it.
The defensive activation theory makes some clear predictions about dreaming. For example, because brain flexibility diminishes with age, the fraction of sleep spent in REM should also decrease across the lifespan. And thats exactly what happens: in humans, REM accounts for half of an infants sleep time, but the percentage decreases steadily to about 18% in the elderly. REM sleep appears to become less necessary as the brain becomes less flexible.
Of course, this relationship is not sufficient to prove the defensive activation theory. To test it on a deeper level, we broadened our investigation to animals other than humans. The defensive activation theory makes a specific prediction: the more flexible an animals brain, the more REM sleep it should have to defend its visual system during sleep. To this end, we examined the extent to which the brains of 25 species of primates are pre-programmed versus flexible at birth. How might we measure this? We looked at the time it takes animals of each species to develop. How long do they take to wean from their mothers? How quickly do they learn to walk? How many years until they reach adolescence? The more rapid an animals development, the more pre-programmed (that is, less flexible) the brain.
As predicted, we found that species with more flexible brains spend more time in REM sleep each night. Although these two measuresbrain flexibility and REM sleepwould seem at first to be unrelated, they are in fact linked.
As a side note, two of the primate species we looked at were nocturnal. But this does not change the hypothesis: whenever an animal sleeps, whether at night or during the day, the visual cortex is at risk of takeover by the other senses. Nocturnal primates, equipped with strong night vision, employ their vision throughout the night as they seek food and avoid predation. When they subsequently sleep during the day, their closed eyes allow no visual input, and thus, their visual cortex requires defense.
Dream circuitry is so fundamentally important that it is found even in people who are born blind. However, those who are born blind (or who become blind early in life) dont experience visual imagery in their dreams; instead, they have other sensory experiences, such as feeling their way around a rearranged living room or hearing strange dogs barking. This is because other senses have taken over their visual cortex. In other words, blind and sighted people alike experience activity in the same region of their brain during dreams; they differ only in the senses that are processed there. Interestingly, people who become blind after the age of seven have more visual content in their dreams than those who become blind at younger ages. This, too, is consistent with the defensive activation theory: brains become less flexible as we age, so if one loses sight at an older age, the non-visual senses cannot fully conquer the visual cortex.
If dreams are visual hallucinations triggered by a lack of visual input, we might expect to find similar visual hallucinations in people who are slowly deprived of visual input while awake. In fact, this is precisely what happens in people with eye degeneration, patients confined to a tank-respirator, and prisoners in solitary confinement. In all of these cases, people see things that are not there.
We developed our defensive activation theory to explain visual hallucinations during extended periods of darkness, but it may represent a more general principle: the brain has evolved specific circuitry to generate activity that compensates for periods of deprivation. This might occur in several scenarios: when deprivation is regular and predictable (e.g., dreams during sleep), when there is damage to the sensory input pathway (e.g., tinnitus or phantom limb syndrome), and when deprivation is unpredictable (e.g., hallucinations induced by sensory deprivation). In this sense, hallucinations during deprivation may in fact be a feature of the system rather than a bug.
Were now pursuing a systematic comparison between a variety of species across the animal kingdom. So far, the evidence has been encouraging. Some mammals are born immature, unable to regulate their own temperature, acquire food, or defend themselves (think kittens, puppies, and ferrets). Others are born mature, emerging from the womb with teeth, fur, open eyes, and the abilities to regulate their temperature, walk within an hour of birth, and eat solid food (think guinea pigs, sheep, and giraffes). The immature animals have up to 8 times more REM sleep than those born mature. Why? Because when a newborn brain is highly flexible, the system requires more effort to defend the visual system during sleep.
Since the dawn of communication, dreams have perplexed philosophers, priests, and poets. What do dreams mean? Do they portend the future? In recent decades, dreams have come under the gaze of neuroscientists as one of the fields central unsolved mysteries. Do they serve a more practical, functional purpose? We suggest that dream sleep exists, at least in part, to prevent the other senses from taking over the brains visual cortex when it goes unused. Dreams are the counterbalance against too much flexibility. Thus, although dreams have long been the subject of song and story, they may be better understood as the strange lovechild of brain plasticity and the rotation of the planet.
For more information:
For your security, we've sent a confirmation email to the address you entered. Click the link to confirm your subscription and begin receiving our newsletters. If you don't get the confirmation within 10 minutes, please check your spam folder.
Contact us at letters@time.com.
Link:
Why Do We Dream? A New Theory on How It Protects Our Brains - TIME
- Sheffield Lab: Understanding the neuroscience of memories - University of Chicago News - April 27th, 2025 [April 27th, 2025]
- Prenatal Stress Leaves Lasting Molecular Imprints on Babies - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Dean Buonomano explores the concept of time in neuroscience and physics - The Transmitter - April 27th, 2025 [April 27th, 2025]
- Psychedelics May Reset Brain-Immune Link Driving Fear and Anxiety - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Infant Social Skills Thrive Despite Hardship - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- From Cologne to Country Roads: One scientist's interdisciplinary journey to build bridges (and robotic insects) between neuroscience and engineering -... - April 27th, 2025 [April 27th, 2025]
- Eyes Reveal Intentions Faster Than We Think - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Immune Resilience Identified as Key to Healthy Aging and Longevity - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Energy Starvation Triggers Dangerous Glutamate Surges in the Brain - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- WVU Rockefeller Neuroscience Institute first in U.S. to successfully test innovative brain-computer interface technology to decode speech and language... - April 27th, 2025 [April 27th, 2025]
- Microglia Reprogrammed to Deliver Precision Alzheimers Therapies - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Neuroscience Says Music Is an Emotion Regulation Machine. Heres What to Play for Happiness, Productivity, or Deep Thinking - Inc.com - April 19th, 2025 [April 19th, 2025]
- Early Maternal Affection Shapes Key Personality Traits for Life - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- Elons new neuroscience major highlighted by Greensboro News & Record - Elon University - April 19th, 2025 [April 19th, 2025]
- Brain Blast event at St. Lawrence University teaches local students neuroscience - North Country Now - April 19th, 2025 [April 19th, 2025]
- AI Reveals What Keeps People Committed to Exercise - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- The "Holy Grail" of Neuroscience? Researchers Create Stunningly Accurate Digital Twin of the Brain - The Debrief - April 19th, 2025 [April 19th, 2025]
- Annenberg School Vice Dean Emily Falk publishes book on the neuroscience of decision-making - The Daily Pennsylvanian - April 19th, 2025 [April 19th, 2025]
- Music-Induced Chills Trigger Natural Opioids in the Brain - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- What We Value: The Neuroscience of Choice and Change - think.kera.org - April 19th, 2025 [April 19th, 2025]
- Kile takes top neuroscience post at Sutter Health as system pushes to align care, expand trials - The Business Journals - April 19th, 2025 [April 19th, 2025]
- A Grain of Brain, 523 Million Synapses, and the Most Complicated Neuroscience Experiment Ever Attempted - SciTechDaily - April 19th, 2025 [April 19th, 2025]
- Mild Brain Stimulation Alters Decision-Making Speed and Flexibility - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- Cannabis studies were informing fundamental neuroscience in the 1970s - Nature - April 10th, 2025 [April 10th, 2025]
- To make a meaningful contribution to neuroscience, fMRI must break out of its silo - The Transmitter - April 10th, 2025 [April 10th, 2025]
- Steve Jobss Unexpected Secret to Being More Creative (Backed by Neuroscience) - Inc.com - April 10th, 2025 [April 10th, 2025]
- Challenging Decades of Neuroscience: Brain Cells Are More Plastic Than Previously Thought - SciTechDaily - April 10th, 2025 [April 10th, 2025]
- Q&A: Lundbecks head of R&D on letting biology speak in neuroscience - Endpoints News - April 10th, 2025 [April 10th, 2025]
- Why it's hard to study the neuroscience of psychedelics : Short Wave - NPR - April 10th, 2025 [April 10th, 2025]
- Fear Sync: How Males and Females Respond to Stress Together - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Chemotherapy Disrupts Brain Connectivity - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Newly awarded NIH grants for neuroscience lag 77 percent behind previous nine-year average - The Transmitter - April 10th, 2025 [April 10th, 2025]
- Wittstein interviewed by The Times News about new neuroscience major - Elon University - April 10th, 2025 [April 10th, 2025]
- Alto Neuroscience initiated with a Buy at H.C. Wainwright - Yahoo Finance - April 10th, 2025 [April 10th, 2025]
- New map of brain hailed as watershed for neuroscience - The Times - April 10th, 2025 [April 10th, 2025]
- GSK Ramps Up Neuroscience Investment With ABL Brain Shuttle Deal - insights.citeline.com - April 10th, 2025 [April 10th, 2025]
- ADHD and Music: Why Background Beats May Boost Study Focus - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Brains Rewire Themselves to Survive Deadly Infection - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- AbbVie Hold Rating: Balancing Strong Immunology Growth with Challenges in Aesthetics, Neuroscience, and Oncology - TipRanks - April 10th, 2025 [April 10th, 2025]
- Want to Feel Better and Be More Mindful? Neuroscience Says This Habit Might Be Holding You Back - Inc.com - April 10th, 2025 [April 10th, 2025]
- How One Bad Meal Rewires the Brain to Avoid That Food Forever - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Marcus Neuroscience Institute to Host Brain and Spine Symposium - South Florida Hospital News - March 30th, 2025 [March 30th, 2025]
- Elon University to launch neuroscience major in fall 2025 - Today at Elon - March 30th, 2025 [March 30th, 2025]
- The brains stalwart sentinels express an unexpected gene - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- Video catches microglia in the act of synaptic pruning - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- Null and Noteworthy: Reexamining registered reports - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- Accepting the bitter lesson and embracing the brains complexity - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- NIH neurodevelopmental assessment system now available as iPad app - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- Stronger Bonds Before Birth Shape Healthier Mother-Child Futures - Neuroscience News - March 30th, 2025 [March 30th, 2025]
- How Emotionally Intelligent People Learn to Control Their Inner Voice, Backed by Neuroscience - Inc. - March 30th, 2025 [March 30th, 2025]
- Gabriele Scheler reflects on the interplay between language, thought and AI - The Transmitter: Neuroscience News and Perspectives - March 30th, 2025 [March 30th, 2025]
- Worlds first crowd-sourced neuroscience study aims to understand how our brains predict the future - EurekAlert - March 15th, 2025 [March 15th, 2025]
- Rewriting Neuroscience: Possible Foundations of Human Intelligence Observed for the First Time - SciTechDaily - March 15th, 2025 [March 15th, 2025]
- Calculating neurosciences carbon cost: Q&A with Stefan Pulver and William Smith - The Transmitter: Neuroscience News and Perspectives - March 15th, 2025 [March 15th, 2025]
- The future of neuroscience research at U.S. minority-serving institutions is in danger - The Transmitter: Neuroscience News and Perspectives - March 15th, 2025 [March 15th, 2025]
- Dopamine and social media: Why you cant stop scrolling, according to neuroscience - PsyPost - March 15th, 2025 [March 15th, 2025]
- Neuroscience Discovered a Clever Trick for Squeezing More Joy Out of Everyday Pleasures - Inc. - March 15th, 2025 [March 15th, 2025]
- The limits of neuroscience - The Transmitter: Neuroscience News and Perspectives - March 15th, 2025 [March 15th, 2025]
- BPOM Explains The Benefits Of Fasting From The Health And Neuroscience Side - VOI English - March 15th, 2025 [March 15th, 2025]
- How tiny tardigrades could help tackle systems neuroscience questions - The Transmitter: Neuroscience News and Perspectives - March 15th, 2025 [March 15th, 2025]
- Alison Preston explains how our brains form mental frameworks for interpreting the world - The Transmitter: Neuroscience News and Perspectives - March 15th, 2025 [March 15th, 2025]
- The Mystical Mind Meets Neuroscience: Seeking the Roots of Consciousness - Next Big Idea Club Magazine - March 15th, 2025 [March 15th, 2025]
- Myosin Therapeutics Closes Second Seed Round to Advance Clinical Trials for Innovative Cancer and Neuroscience Therapies - PR Newswire - March 5th, 2025 [March 5th, 2025]
- Neuroscience Ph.D. programs adjust admissions in response to U.S. funding uncertainty - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- New tools help make neuroimaging accessible to more researchers - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- Future Thinking Training Reduces Impulsivity - Neuroscience News - March 5th, 2025 [March 5th, 2025]
- Null and Noteworthy, relaunched: Probing a schizophrenia biomarker - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- How to communicate the value of curiosity-driven research - The Transmitter: Neuroscience News and Perspectives - March 5th, 2025 [March 5th, 2025]
- Cognitive neuroscience approach to explore the impact of wind turbine noise on various mental functions - Nature.com - March 5th, 2025 [March 5th, 2025]
- Football on the Brain: Helping coaches embed neuroscience knowledge - Training Ground Guru - March 5th, 2025 [March 5th, 2025]
- Taking Control: Using Neuroscience to Build Better Lives - theLoop - March 5th, 2025 [March 5th, 2025]
- Creating a pipeline of talent to feed the growth of Neuroscience: Lessons from Ghana - Myjoyonline - March 5th, 2025 [March 5th, 2025]
- Exclusive: NIH appears to archive policy requiring female animals in studies - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Roll On Down The Highway 2025 Tour coming to Neuroscience Group Field - WeAreGreenBay.com - February 25th, 2025 [February 25th, 2025]
- STEM organizations host Neuroscience Outreach Fair for local K-12 students - University of Virginia The Cavalier Daily - February 25th, 2025 [February 25th, 2025]
- Adapt or die: Safeguarding the future of diversity and inclusion funding in neuroscience - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- The last two-author neuroscience paper? - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]
- Gate Neurosciences Strengthens Focus on the Synapse as a Therapeutic Target with Acquisition of Boost Neuroscience - Business Wire - February 25th, 2025 [February 25th, 2025]
- Why Firefly Neuroscience, Inc. (AIFF) Is Soaring This Year So Far - Yahoo Finance - February 25th, 2025 [February 25th, 2025]
- Breaking the barrier between theorists and experimentalists - The Transmitter: Neuroscience News and Perspectives - February 25th, 2025 [February 25th, 2025]