Have you ever found yourself tapping your foot or nodding your head to the rhythm of a catchy tune, seemingly without any effort? It turns out, theres a scientific explanation behind our instinctual desire to move along with music. A recent study published in Science Advances sheds light on why certain rhythms make us want to dance more than others.
By analyzing brain activity and the sensation known as groove, researchers discovered that a rhythm of moderate complexity triggers the highest desire to move. This desire is mirrored in our brains, particularly within the left sensorimotor cortex, hinting at a deeply intertwined relationship between motor actions and sensory processes.
Prior studies have shown that even without actual movement, the perception of rhythmic music can activate areas of the brain associated with movement, such as the premotor cortices and basal ganglia. This activation suggests a link between how we process time through movement and how we perceive music.
Building on this foundation, the authors of the new study aimed to unravel the neurophysiological underpinnings of the groove by examining how changes in rhythmic properties of music could induce motor engagement through alterations in audio-motor neural dynamics.
In speech and music, rhythm appears to be a crucial parameter for capturing auditory sensory information. Furthermore, previous studies have implicated the motor-dedicated cortical area in time perception. Initially, we aimed to investigate the implications of these motor dynamics in auditory perception, said Arnaud Zalta, the first author of the study and a postdoctoral fellow at ENS-PSL.
To explore these dynamics, the researchers conducted a series of experiments involving 111 participants across different settings, including online surveys, magnetoencephalography (MEG) sessions, and control tapping tasks. Participants ranged in age from 19 to 71 years, with a majority being females, and were selected without regard to their musical or dance background.
In the core of these experiments was a collection of 12 original melodies, each manipulated to vary in rhythmic predictability by adjusting the degree of syncopation. Syncopation, in this context, refers to the disruption of regular rhythm by placing accents on weak beats, creating a musical hiccup that challenges the listeners temporal expectations.
For the online survey component, participants were directed to a webpage where they listened to each melody through headphones or earphones. After each melody, they rated their level of groove on a Likert scale, expressing how much they felt moved to dance. This straightforward task was designed to capture the subjective experience of groove in a controlled yet flexible online setting.
In the laboratory, the MEG experiment took a deeper dive into the neurological underpinnings of groove. Participants listened to the same set of melodies while their brain activity was recorded using MEG, a technique capable of detecting the magnetic fields generated by neural activity. This allowed the researchers to observe how different rhythms influenced brain dynamics, particularly in areas associated with movement and auditory processing.
Finally, the control tapping experiment provided a behavioral counterpart to the brain imaging data. Participants tapped along to the rhythms of the melodies on a keyboard, offering a tangible measure of their motor engagement with the music. This task complemented the MEG findings by linking the subjective feeling of groove with observable motor responses.
The researchers discovered that our desire to dance, or the feeling of groove, is most strongly elicited by melodies with a medium level of syncopation. This finding implies that rhythms which strike a balance between predictability and rhythmic complexity are the most effective in inducing the urge to dance. In other words, rhythms that are neither too simple nor too complex, but rather those that offer a moderate challenge to our anticipatory and motor systems, are most likely to get us on our feet.
The researchers further uncovered that this groove sensation is closely tied to specific patterns of brain activity. Participants exhibited a unique neural response when listening to syncopated rhythms, with the left sensorimotor cortex a brain region involved in coordinating auditory and motor information playing a pivotal role.
This area of the brain showed increased engagement when participants were exposed to rhythms that evoked a strong desire to move. This suggests that the left sensorimotor cortex not only processes the music we hear but also anticipates and prepares our bodies for movement, acting as a bridge between hearing a rhythm and physically responding to it.
The brain region which is the site of the left sensorimotor cortex is currently considered to be the potential cornerstone of sensorimotor integration, essential for the perception of both music and speech. The fact that it appears in our study as necessary for cooperation between the auditory and motor systems reinforces this hypothesis, especially as we are using natural stimuli here, explained senior author Benjamin Morillon of Aix-Marseille Universit.
Moreover, the study introduced a neurodynamic model to explain the transformation of syncopated rhythms into the subjective experience of groove. This model proposes that our brains interpret the rhythms through a network of oscillators, which then translate these rhythms into motor engagement signals. Interestingly, the degree of syncopation correlated with neural activity at a specific frequency (2 Hz), indicating that our brains response to music involves an interaction between auditory perception and motor preparation.
Motor actions and sensory processes are closely intertwined to help us adapt better to our environment, Zalta told PsyPost. Specifically, when we listen to something, time becomes crucial as the auditory stimuli inherently impose high temporal constraints. When the auditory brain regions struggle to process temporal information accurately, motor dynamics appear to be recruited.
Furthermore, we observed that sensorimotor regions play a mediating role between sensory auditory and motor regions. In short, it is the interplay of these three regions that gives rise to the sensation of groove.
The research also highlighted a spectral gradient along the dorsal auditory pathways when participants listened to music. This means that as one moves from the auditory regions of the brain towards the motor areas, the dominant frequency of brain activity progressively increases. Lower frequencies were noted in regions closer to auditory processing, while higher frequencies were found as the gradient approached areas implicated in motor control.
When we examined the cortical dynamics of the brain during our task, we observed an ascending postero-anterior gradient which was not expected, Zalta said. However, this gradient does not seem to be related to the sensation of groove or the level of syncopation of the stimuli. This phenomenon remains unclear.
Regarding the long-term goals for this line of research, Zalta explained that the dopaminergic system is closely intertwined with motor processes and has been implicated in time perception. I aim to delve deeper into investigating this neurotransmitter.
The study, Neural dynamics of predictive timing and motor engagement in music listening, was authored by Arnaud Zalta, Edward W. Large, Daniele Schn, and Benjamin Morillon.
More:
The neuroscience of groove: Why certain rhythms make us want to dance - PsyPost
- Elusive Cures: Why Neuroscience Hasnt Solved Brain Disordersand How We Can Change That, an excerpt - The Transmitter - June 10th, 2025 [June 10th, 2025]
- Nanowire Retinal Implant Restores Vision and Sees Infrared - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- KLOTHO NEUROSCIENCE, INC. ANNOUNCES AN APPROACH TO INCREASE LONGEVITY AND HEALTHY LIFE SPAN - REPLACE A SILENCED GENE CALLED ALPHA-KLOTHO... - June 10th, 2025 [June 10th, 2025]
- Obeying Orders Lowers Moral Responsibility Perception in the Brain - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- Family Time and Parental Bonding Linked to Better Sleep in Preteens - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- Study Links Gut Bacteria to MS Risk and Reveals Key Triggers - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- Alto Neuroscience Announces Acquisition of Novel Dopamine Agonist Combination Product Candidate, Adding Late-Stage Readout in Treatment Resistant... - June 10th, 2025 [June 10th, 2025]
- Sleep-Wake Perception Intact in Many With Insomnia - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- Cannabis Use Among U.S. Seniors Has Surged 46% in Just Two Years - Neuroscience News - June 10th, 2025 [June 10th, 2025]
- Anoki Integrates With Magnite While Seedtag Adds Neuroscience To Find Emotional Connections - TVREV - June 10th, 2025 [June 10th, 2025]
- Neuroscience: Knowing People's Names Makes You Empathize With Them Better. (By the Way, My Name Is Bill) - Inc.com - June 1st, 2025 [June 1st, 2025]
- Kindness Sparks Cooperation by Boosting Social Connectedness - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- Neuroscience and Genetics of ADHD and Neurodevelopment - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- The Neuroscience of Cancer - Harvard Medicine Magazine - June 1st, 2025 [June 1st, 2025]
- Singing to Infants Boosts Mood and Bonding - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- Neuroscience: Go Swimming and Your Brain Will Thank You - Inc.com - June 1st, 2025 [June 1st, 2025]
- Blood Fat Links Found Between Heart Risk and Alzheimers - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- Tiny Brain Cell Cluster Found to Drive Obesity and Overeating - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- New Neuroscience Shows Why Its So Important to Read Aloud to Your Kids - Inc.com - June 1st, 2025 [June 1st, 2025]
- Cats Can Recognize Their Owners by Smell Alone - Neuroscience News - June 1st, 2025 [June 1st, 2025]
- St. Lukes Center for Neuroscience Helps Those with Same Illness as Billy Joel - TAPinto - June 1st, 2025 [June 1st, 2025]
- These triplets who graduated from Georgia Tech with neuroscience degrees head to medical school - 11Alive.com - June 1st, 2025 [June 1st, 2025]
- Gabe Newell co-founded a neuroscience company in 2019 and its first brain chip is expected to ship later this year - PC Gamer - June 1st, 2025 [June 1st, 2025]
- Next-Gen Painkiller Blocks Pain Without the High - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Inflammation Triggers Repetitive Behaviors in ASD and OCD - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Astrocytes Take Center Stage in Brain Function and Behavior - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Setting the SCENE for Neuroscience Breakthroughs - Mellon College of Science - Carnegie Mellon University - May 21st, 2025 [May 21st, 2025]
- Long COVID Brain Fog Linked to Inflammation and Stress Markers - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Warren Buffett Says Youre Too Focused on the Negative. Heres the Neuroscience Showing Hes Right - Inc.com - May 21st, 2025 [May 21st, 2025]
- Reading Fiction Boosts Empathy and Fights Loneliness - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Astrocytes, Not Neurons, Drive Brains Attention and Alertness - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Mapping Young Minds: The Neuroscience Behind Babilou Family Singapore's Revolutionary Education Model - PR Newswire - May 21st, 2025 [May 21st, 2025]
- Loneliness Linked to 24% Higher Risk of Hearing Loss - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Eureka Moments Double Memory by Rewiring the Brain - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- Scientists use brain activity to predict StarCraft II skill in fascinating new neuroscience research - psypost.org - May 21st, 2025 [May 21st, 2025]
- Stress of Long Work Hours May Physically Alter the Brain - Neuroscience News - May 21st, 2025 [May 21st, 2025]
- The Neuroscience of Dopamine: How to Triumph Over Constant Wanting - Next Big Idea Club - May 12th, 2025 [May 12th, 2025]
- Verbal Abuse in Childhood Rewires the Developing Brain - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Heavy Social Media Use Linked to Believing and Spreading Fake News - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Brain Cells That Predict What Comes Next, Even When Its New - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- The Temperature | Better happiness through neuroscience - The Colorado Sun - May 12th, 2025 [May 12th, 2025]
- Genes Strongly Influence When Babies Take Their First Steps - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Using Music to Detect Concussion in Kids - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Boosting Klotho Protein Slows Aging and Enhances Health - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Eye Movements Set the Speed Limit for What You Can See - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Seeing Is Believing: How We Judge AI as Creative or Not - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Exercise Boosts Stem Cell Therapy for Parkinsons - Neuroscience News - May 12th, 2025 [May 12th, 2025]
- Aspen Neuroscience Announces 6-Month ASPIRO Phase 1/2a Clinical Trial Results of Personalized Cell Therapy for Parkinson's Disease - BioSpace - May 12th, 2025 [May 12th, 2025]
- Sheffield Lab: Understanding the neuroscience of memories - University of Chicago News - April 27th, 2025 [April 27th, 2025]
- Prenatal Stress Leaves Lasting Molecular Imprints on Babies - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Dean Buonomano explores the concept of time in neuroscience and physics - The Transmitter - April 27th, 2025 [April 27th, 2025]
- Psychedelics May Reset Brain-Immune Link Driving Fear and Anxiety - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Infant Social Skills Thrive Despite Hardship - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- From Cologne to Country Roads: One scientist's interdisciplinary journey to build bridges (and robotic insects) between neuroscience and engineering -... - April 27th, 2025 [April 27th, 2025]
- Eyes Reveal Intentions Faster Than We Think - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Immune Resilience Identified as Key to Healthy Aging and Longevity - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Energy Starvation Triggers Dangerous Glutamate Surges in the Brain - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- WVU Rockefeller Neuroscience Institute first in U.S. to successfully test innovative brain-computer interface technology to decode speech and language... - April 27th, 2025 [April 27th, 2025]
- Microglia Reprogrammed to Deliver Precision Alzheimers Therapies - Neuroscience News - April 27th, 2025 [April 27th, 2025]
- Neuroscience Says Music Is an Emotion Regulation Machine. Heres What to Play for Happiness, Productivity, or Deep Thinking - Inc.com - April 19th, 2025 [April 19th, 2025]
- Early Maternal Affection Shapes Key Personality Traits for Life - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- Elons new neuroscience major highlighted by Greensboro News & Record - Elon University - April 19th, 2025 [April 19th, 2025]
- Brain Blast event at St. Lawrence University teaches local students neuroscience - North Country Now - April 19th, 2025 [April 19th, 2025]
- AI Reveals What Keeps People Committed to Exercise - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- The "Holy Grail" of Neuroscience? Researchers Create Stunningly Accurate Digital Twin of the Brain - The Debrief - April 19th, 2025 [April 19th, 2025]
- Annenberg School Vice Dean Emily Falk publishes book on the neuroscience of decision-making - The Daily Pennsylvanian - April 19th, 2025 [April 19th, 2025]
- Music-Induced Chills Trigger Natural Opioids in the Brain - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- What We Value: The Neuroscience of Choice and Change - think.kera.org - April 19th, 2025 [April 19th, 2025]
- Kile takes top neuroscience post at Sutter Health as system pushes to align care, expand trials - The Business Journals - April 19th, 2025 [April 19th, 2025]
- A Grain of Brain, 523 Million Synapses, and the Most Complicated Neuroscience Experiment Ever Attempted - SciTechDaily - April 19th, 2025 [April 19th, 2025]
- Mild Brain Stimulation Alters Decision-Making Speed and Flexibility - Neuroscience News - April 19th, 2025 [April 19th, 2025]
- Cannabis studies were informing fundamental neuroscience in the 1970s - Nature - April 10th, 2025 [April 10th, 2025]
- To make a meaningful contribution to neuroscience, fMRI must break out of its silo - The Transmitter - April 10th, 2025 [April 10th, 2025]
- Steve Jobss Unexpected Secret to Being More Creative (Backed by Neuroscience) - Inc.com - April 10th, 2025 [April 10th, 2025]
- Challenging Decades of Neuroscience: Brain Cells Are More Plastic Than Previously Thought - SciTechDaily - April 10th, 2025 [April 10th, 2025]
- Q&A: Lundbecks head of R&D on letting biology speak in neuroscience - Endpoints News - April 10th, 2025 [April 10th, 2025]
- Why it's hard to study the neuroscience of psychedelics : Short Wave - NPR - April 10th, 2025 [April 10th, 2025]
- Fear Sync: How Males and Females Respond to Stress Together - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Chemotherapy Disrupts Brain Connectivity - Neuroscience News - April 10th, 2025 [April 10th, 2025]
- Newly awarded NIH grants for neuroscience lag 77 percent behind previous nine-year average - The Transmitter - April 10th, 2025 [April 10th, 2025]