Category Archives: Physiology

Urination – Wikipedia

release of urine from the urinary bladder

Urination is the release of urine from the urinary bladder through the urethra to the outside of the body. It is the urinary system's form of excretion. It is also known medically as micturition, voiding, uresis, or, rarely, emiction, and known colloquially by various names including peeing, weeing, and pissing.

In healthy humans (and many other animals) the process of urination is under voluntary control. In infants, some elderly individuals, and those with neurological injury, urination may occur as a reflex. It is normal for adult humans to urinate up to seven times during the day.[1]

In some animals, in addition to expelling waste material, urination can mark territory or express submissiveness. Physiologically, urination involves coordination between the central, autonomic, and somatic nervous systems. Brain centers that regulate urination include the pontine micturition center, periaqueductal gray, and the cerebral cortex. In placental mammals, urine is drained through the urinary meatus, a urethral opening in the male penis or female vulval vestibule.[2][3]:38,364

The main organs involved in urination are the urinary bladder and the urethra. The smooth muscle of the bladder, known as the detrusor, is innervated by sympathetic nervous system fibers from the lumbar spinal cord and parasympathetic fibers from the sacral spinal cord.[4] Fibers in the pelvic nerves constitute the main afferent limb of the voiding reflex; the parasympathetic fibers to the bladder that constitute the excitatory efferent limb also travel in these nerves. Part of the urethra is surrounded by the male or female external urethral sphincter, which is innervated by the somatic pudendal nerve originating in the cord, in an area termed Onuf's nucleus.[5]

Smooth muscle bundles pass on either side of the urethra, and these fibers are sometimes called the internal urethral sphincter, although they do not encircle the urethra. Further along the urethra is a sphincter of skeletal muscle, the sphincter of the membranous urethra (external urethral sphincter). The bladder's epithelium is termed transitional epithelium which contains a superficial layer of dome-like cells and multiple layers of stratified cuboidal cells underneath when evacuated. When the bladder is fully distended the superficial cells become squamous (flat) and the stratification of the cuboidal cells is reduced in order to provide lateral stretching.

The physiology of micturition and the physiologic basis of its disorders are subjects about which there is much confusion, especially at the supraspinal level. Micturition is fundamentally a spinobulbospinal reflex facilitated and inhibited by higher brain centers such as the pontine micturition center and, like defecation, subject to voluntary facilitation and inhibition.[6]

In healthy individuals, the lower urinary tract has two discrete phases of activity: the storage (or guarding) phase, when urine is stored in the bladder; and the voiding phase, when urine is released through the urethra. The state of the reflex system is dependent on both a conscious signal from the brain and the firing rate of sensory fibers from the bladder and urethra.[6] At low bladder volumes, afferent firing is low, resulting in excitation of the outlet (the sphincter and urethra), and relaxation of the bladder.[7] At high bladder volumes, afferent firing increases, causing a conscious sensation of urinary urge. When the individual is ready to urinate, he or she consciously initiates voiding, causing the bladder to contract and the outlet to relax. Voiding continues until the bladder empties completely, at which point the bladder relaxes and the outlet contracts to re-initiate storage.[6] The muscles controlling micturition are controlled by the autonomic and somatic nervous systems. During the storage phase the internal urethral sphincter remains tense and the detrusor muscle relaxed by sympathetic stimulation. During micturition, parasympathetic stimulation causes the detrusor muscle to contract and the internal urethral sphincter to relax. The external urethral sphincter (sphincter urethrae) is under somatic control and is consciously relaxed during micturition.

In infants, voiding occurs involuntarily (as a reflex). The ability to voluntarily inhibit micturition develops by the age of 23 years, as control at higher levels of the central nervous system develops. In the adult, the volume of urine in the bladder that normally initiates a reflex contraction is about 300400 millilitres (1114impfloz; 1014USfloz).

During storage, bladder pressure stays low, because of the bladder's highly compliant nature. A plot of bladder (intravesical) pressure against the depressant of fluid in the bladder (called a cystometrogram), will show a very slight rise as the bladder is filled. This phenomenon is a manifestation of the law of Laplace, which states that the pressure in a spherical viscus is equal to twice the wall tension divided by the radius. In the case of the bladder, the tension increases as the organ fills, but so does the radius. Therefore, the pressure increase is slight until the organ is relatively full. The bladder's smooth muscle has some inherent contractile activity; however, when its nerve supply is intact, stretch receptors in the bladder wall initiate a reflex contraction that has a lower threshold than the inherent contractile response of the muscle.

Action potentials carried by sensory neurons from stretch receptors in the urinary bladder wall travel to the sacral segments of the spinal cord through the pelvic nerves.[6] Since bladder wall stretch is low during the storage phase, these afferent neurons fire at low frequencies. Low-frequency afferent signals cause relaxation of the bladder by inhibiting sacral parasympathetic preganglionic neurons and exciting lumbar sympathetic preganglionic neurons. Conversely, afferent input causes contraction of the sphincter through excitation of Onuf's nucleus, and contraction of the bladder neck and urethra through excitation of the sympathetic preganglionic neurons.

Diuresis (production of urine by the kidney) occurs constantly, and as the bladder becomes full, afferent firing increases, yet the micturition reflex can be voluntarily inhibited until it is appropriate to begin voiding.

Voiding begins when a voluntary signal is sent from the brain to begin urination, and continues until the bladder is empty.

Bladder afferent signals ascend the spinal cord to the periaqueductal gray, where they project both to the pontine micturition center and to the cerebrum.[8] At a certain level of afferent activity, the conscious urge to void becomes difficult to ignore. Once the voluntary signal to begin voiding has been issued, neurons in pontine micturition center fire maximally, causing excitation of sacral preganglionic neurons. The firing of these neurons causes the wall of the bladder to contract; as a result, a sudden, sharp rise in intravesical pressure occurs. The pontine micturition center also causes inhibition of Onuf's nucleus, resulting in relaxation of the external urinary sphincter.[9] When the external urinary sphincter is relaxed urine is released from the urinary bladder when the pressure there is great enough to force urine to flow out of the urethra. The micturition reflex normally produces a series of contractions of the urinary bladder.

The flow of urine through the urethra has an overall excitatory role in micturition, which helps sustain voiding until the bladder is empty.[10]

After urination, the female urethra empties partially by gravity, with assistance from muscles.[clarification needed] Urine remaining in the male urethra is expelled by several contractions of the bulbospongiosus muscle, and, by some men, manual squeezing along the length of the penis to expel the rest of the urine.

For land mammals over 1 kilogram, the duration of urination does not vary with body mass, being dispersed around an average of 21 seconds (standard deviation 13 seconds), despite a 4 order of magnitude (1000) difference in bladder volume.[11][12] This is due to increased urethra length of large animals, which amplifies gravitational force (hence flow rate), and increased urethra width, which increases flow rate. For smaller mammals a different phenomenon occurs, where urine is discharged as droplets, and urination in smaller mammals, such as mice and rats, can occur in less than a second.[12] The posited benefits of faster voiding are decreased risk of predation (while voiding) and decreased risk of urinary tract infection.

The mechanism by which voluntary urination is initiated remains unsettled.[13] One possibility is that the voluntary relaxation of the muscles of the pelvic floor causes a sufficient downward tug on the detrusor muscle to initiate its contraction.[14] Another possibility is the excitation or disinhibition of neurons in the pontine micturition center, which causes concurrent contraction of the bladder and relaxation of the sphincter.[6]

There is an inhibitory area for micturition in the midbrain. After transection of the brain stem just above the pons, the threshold is lowered and less bladder filling is required to trigger it, whereas after transection at the top of the midbrain, the threshold for the reflex is essentially normal. There is another facilitatory area in the posterior hypothalamus. In humans with lesions in the superior frontal gyrus, the desire to urinate is reduced and there is also difficulty in stopping micturition once it has commenced. However, stimulation experiments in animals indicate that other cortical areas also affect the process.

The bladder can be made to contract by voluntary facilitation of the spinal voiding reflex when it contains only a few milliliters of urine. Voluntary contraction of the abdominal muscles aids the expulsion of urine by increasing the pressure applied to the urinary bladder wall, but voiding can be initiated without straining even when the bladder is nearly empty.

Voiding can also be consciously interrupted once it has begun, through a contraction of the perineal muscles. The external sphincter can be contracted voluntarily, which will prevent urine from passing down the urethra.

The need to urinate is experienced as an uncomfortable, full feeling. It is highly correlated with the fullness of the bladder.[15] In many males the feeling of the need to urinate can be sensed at the base of the penis as well as the bladder, even though the neural activity associated with a full bladder comes from the bladder itself, and can be felt there as well. In females the need to urinate is felt in the lower abdomen region when the bladder is full. When the bladder becomes too full, the sphincter muscles will involuntarily relax, allowing urine to pass from the bladder. Release of urine is experienced as a lessening of the discomfort.

Many clinical conditions can cause disturbances to normal urination, including:

A drug that increases urination is called a diuretic, whereas antidiuretics decrease the production of urine by the kidneys.

There are three major types of bladder dysfunction due to neural lesions: (1) the type due to interruption of the afferent nerves from the bladder; (2) the type due to interruption of both afferent and efferent nerves; and (3) the type due to interruption of facilitatory and inhibitory pathways descending from the brain. In all three types the bladder contracts, but the contractions are generally not sufficient to empty the viscus completely, and residual urine is left in the bladder. Paruresis, also known as shy bladder syndrome, is an example of a bladder interruption from the brain that often causes total interruption until the person has left a public area. As these people may have difficulty urinating in the presence of others and will consequently avoid using urinals directly adjacent to another person. Alternatively, they may opt for the privacy of a stall or simply avoid public toilets altogether.

When the sacral dorsal roots are cut in experimental animals or interrupted by diseases of the dorsal roots such as tabes dorsalis in humans, all reflex contractions of the bladder are abolished. The bladder becomes distended, thin-walled, and hypotonic, but there are some contractions because of the intrinsic response of the smooth muscle to stretch.

When the afferent and efferent nerves are both destroyed, as they may be by tumors of the cauda equina or filum terminale, the bladder is flaccid and distended for a while. Gradually, however, the muscle of the "decentralized bladder" becomes active, with many contraction waves that expel dribbles of urine out of the urethra. The bladder becomes shrunken and the bladder wall hypertrophied. The reason for the difference between the small, hypertrophic bladder seen in this condition and the distended, hypotonic bladder seen when only the afferent nerves are interrupted is not known. The hyperactive state in the former condition suggests the development of denervation hypersensitization even though the neurons interrupted are preganglionic rather than postganglionic.

During spinal shock, the bladder is flaccid and unresponsive. It becomes overfilled, and urine dribbles through the sphincters (overflow incontinence). After spinal shock has passed, a spinally mediated voiding reflex ensues, although there is no voluntary control and no inhibition or facilitation from higher centers. Some paraplegic patients train themselves to initiate voiding by pinching or stroking their thighs, provoking a mild mass reflex. In some instances, the voiding reflex becomes hyperactive. Bladder capacity is reduced and the wall becomes hypertrophied. This type of bladder is sometimes called the spastic neurogenic bladder. The reflex hyperactivity is made worse, and may be caused, by infection in the bladder wall.

Due to the positions where the urethra exits the body, males and females often use different techniques for urination.

Most males prefer to urinate standing while others prefer to urinate sitting or squatting. Elderly males with prostate gland enlargement may benefit from sitting down while in healthy males, no difference is found in the ability to urinate.[16][17] For practising Muslim men, the genital modesty of squatting is also associated with proper cleanliness requirements or awrah.[18]

In human females, the urethra opens straight into the vulva. Hence, urination can take place while sitting or squatting for defecation. It is also possible for females to urinate while standing, and while clothed.[19] It is common for women in various regions of Africa to use this method when they urinate,[20][21][22][need quotation to verify][23][24][25] as do women in Laos.[26][not in citation given] Herodotus described a similar custom in ancient Egypt.[27] An alternative method for women to urinate standing is to use a tool known as a female urination device to assist.[28]

A common technique used in many undeveloped nations involves holding the child by the backs of the thighs, above the ground, facing outward, in order to urinate.[citation needed]

The fetus urinates hourly and produces most of the amniotic fluid in the second and third trimester of pregnancy. The amniotic fluid is then recycled by fetal swallowing.[29]

Occasionally, if a male's penis is damaged or removed, or a female's genitals/urinary tract is damaged, other urination techniques must be used. Most often in such cases, doctors will reposition the urethra to a location where urination can still be accomplished, usually in a position that would only promote urination while seated/squatting, though a permanent urinary catheter may be used in rare cases.[citation needed]

Sometimes urination is done in a container such as a bottle, urinal, bedpan, or chamber pot (also known as a gazunder). A container or wearable urine collection device may be used so that the urine can be examined for medical reasons or for a drug test, for a bedridden patient, when no toilet is available, or there is no other possibility to dispose of the urine immediately.

An alternative solution (for traveling, stakeouts, etc.) is a special disposable bag containing absorbent material that solidifies the urine within seconds, making it convenient and safe to store and dispose of later.[citation needed]

It is possible for both genders to urinate into bottles in case of emergencies. The technique can help children to urinate discreetly inside cars and in other places without being seen by others.[30]

Babies have little socialized control over urination within traditions or families that do not practice elimination communication and instead use diapers. Toilet training is the process of learning to restrict urination to socially approved times and situations. Consequently, young children sometimes suffer from nocturnal enuresis.[31]

It is socially more accepted and more environmentally hygienic for those who are able, to urinate in a toilet. Public toilets may have urinals, usually for males, although female urinals exist, designed to be used in various ways.[19]

Acceptability of outdoor urination in a public place other than at a public urinal varies with the situation and with customs. Potential disadvantages include a dislike of the smell of urine, and some exposure of genitals.[citation needed] The latter can be unpleasant for the one who exposes them (modesty, lack of privacy) and/or those who can see them;[citation needed] it can be avoided or mitigated by going to a quiet place and/or facing a tree or wall if urinating standing up, or while squatting, hiding the back behind walls, bushes, or a tree.[citation needed]

Portable toilets (port-a-potties) are frequently placed in outdoor situations where no immediate facility is available. These need to be serviced (cleaned out) on a regular basis. Urination in a heavily wooded area is generally harmless, actually saves water, and may be condoned for males (and less commonly, females) in certain situations as long as common sense is used. Examples (depending on circumstances) include activities such as camping, hiking, cross country running, rural fishing, amateur baseball, golf, etc.

The more developed and crowded a place is, the more public urination tends to be objectionable. In the countryside, it is more acceptable than in a street in a town, where it may be a common transgression. Often this is done after the consumption of alcoholic beverages, which causes production of additional urine as well as a reduction of inhibitions. One proposed way to inhibit public urination due to drunkenness is the Urilift, which is disguised as a normal manhole by day but raises out of the ground at night to provide a public restroom for bar-goers.

In many places, public urination is punishable by fines, though attitudes vary widely by country. In general, women are less likely to urinate in public than men. Depending on the culture, adult women, unlike men, are restricted in where they can urinate.[32]

The 5th-century BC historian Herodotus, writing on the culture of the ancient Persians and highlighting the differences with those of the Greeks, noted that to urinate in the presence of others was prohibited among Persians.[33][34]

There was[when?] a popular belief in the UK, that it was legal for a man to urinate in public so long as it occurred on the rear wheel of his vehicle and he had his right hand on the vehicle, but this is not true.[35] Public urination still remains more accepted by males in the UK, although British cultural tradition itself seems to find such practices objectionable.[36]

In Islamic toilet etiquette, it is haram to urinate while facing the Qibla, or to turn one's back to it when urinating or relieving bowels but modesty requirements for females make it impossible for girls to relieve themselves without facilities.[37][38] When toilets are unavailable, females can relieve themselves in Laos, Russia and Mongolia in emergency [39] but it remains utterly unacceptable for females in India even when circumstances make this a highly desirable option.[40]

Women generally need to urinate more frequently than men due to having smaller bladders.[41] Resisting the urge to urinate because of lack of facilities can promote urinary tract infections which can lead to more serious infections and, in rare situations, can cause renal damage in women.[42][43] Female urination devices are available to help women to urinate discreetly, as well to help them urinate while standing.

In Western culture, the standing position is regarded by some as more comfortable and more masculine than the sitting or squatting option.[citation needed] However, in public restrooms without urinals and sometimes at home, men may be urged to use the sitting position as to diminish spattering of urine.[17]A systematic review meta-analysis of the effect of voiding position on the quality of urination found that in elderly males with benign prostate hyperplasia, the sitting position was superior compared with the standing.[44][45] Healthy males were not influenced by voiding position.

A literature review found cultural differences in socially accepted voiding positions around the world and found differences in preferred position: in the Middle-East and Asia, the squatting position was more prevalent, while in the Western world the standing and sitting positions were more common.[46]

Females usually sit or squat for urination, depending on what type of toilet they use: A squat toilet is used for urination in a squatting position. If there is no toilet available then a squatting or a half squat position is common. A partial squatting position (or "hovering") is taken up during urination by some women to avoid sitting on a potentially contaminated toilet seat or when using a female urinal. However, this may leave urine behind in the bladder.[47] It can also result in urine landing on the toilet seat.

In many societies and in many social classes, even mentioning the need to urinate is seen as a social transgression, despite it being a universal need. Even today, many adults avoid stating that they need to urinate.[48][49]

Many expressions exist, some euphemistic and some vulgar. For example, centuries ago the standard English word (both noun and verb, for the product and the activity) was "piss", but subsequently "pee", formerly associated with children, has become more common in general public speech. Since elimination of bodily wastes is, of necessity, a subject talked about with toddlers during toilet training, other expressions considered suitable for use by and with children exist, and some continue to be used by adults, e.g. "weeing", "doing/having a wee-wee", "to tinkle", "go potty".[citation needed]

Other expressions include "squirting" and "taking a leak", and, predominantly by younger persons for outdoor female urination, "popping a squat", referring to the position many women adopt in such circumstances. National varieties of English show creativity. American English uses "to whiz".[50] Australian English has coined "I am off to take a Chinese singing lesson", derived from the tinkling sound of urination against the China porcelain of a toilet bowl.[51] British English uses "going to see my aunt", "going to see a man about a dog", "to piddle", "to splash (one's) boots", as well as "to have a slash", which originates from the Scottish term for a large splash of liquid.[52] One of the most common, albeit old-fashioned, euphemisms in British English is "to spend a penny", a reference to coin-operated pay toilets, which used (pre-decimalisation) to charge that sum.[53]

References to urination are commonly used in slang. Usage in English includes:

Urolagnia is an inclination to obtain sexual enjoyment by looking at or thinking of urine or urination.[54] As a paraphilia, urine may be consumed, or the person may bathe in it. Drinking urine is known as urophagia, though uraphagia refers to the consumption of urine regardless of whether the context is sexual. Involuntary urination during sexual intercourse is common, but rarely acknowledged. In one survey, 24% of women reported involuntary urination during sexual intercourse; in 66% of sufferers urination occurred on penetration, while in 33% urine leakage was restricted to orgasm.[55]

Female kob may exhibit urolagnia during sex; one female will urinate while the other sticks her nose in the stream.[56][57]

A male Patagonian mara, a type of rodent, will stand on his hind legs and urinate on a female's rump, to which the female may respond by spraying a jet of urine backwards into the face of the male.[58] The male's urination is meant to repel other males from his partner while the female's urination is a rejection of any approaching male when she is not receptive.[58] Both anal digging and urination are more frequent during the breeding season and are more commonly done by males.[59]

A male porcupine urinates on a female porcupine prior to mating, spraying the urine at high velocity.[60][61][62][63][64]

While the primary purpose of urination is the same across the animal kingdom, urination often serves a social purpose beyond the expulsion of waste material.[65] In dogs and other animals, urination can mark territory or express submissiveness.[66] In small rodents such as rats and mice, it marks familiar paths.

The urine of animals of differing physiology or sex sometimes has different characteristics. For example, the urine of birds and reptiles is whitish, consisting of a pastelike suspension of uric acid crystals, and discharged with the feces of the animal via the cloaca, whereas mammals' urine is a yellowish colour, with mostly urea instead of uric acid, and is discharged via the urethra, separately from the feces. Some animals' (example: carnivores') urine possesses a strong odour, especially when it is used to mark territory or communicate in other ways.[clarify]

Stallions sometimes exhibit the Flehmen response by smelling the urine of a mare in heat.[67] A stallion sometimes scent marks his urination spots to make his position as herd stallion clear.[68] A male horse's penis is protected by a sheath when it is not in use for urination.[69]

Ring-tailed lemurs have also been shown to mark using urine. Behaviorally, there is a difference between regular urination, where the tail is slightly raised and a stream of urine is produced, and the urine marking behavior, where the tail is held up in display and only a few drops of urine are used.[70][71] The urine-marking behavior is typically used by females to mark territory, and has been observed primarily at the edges of the troop's territory and in areas where other troops may frequent.[72] The urine marking behavior is also most frequent during the mating season, and may play a role in reproductive communication between groups.[70] Some other primate species use also urine for scent-marking.[73] The white-headed capuchin sometimes engages in a practice known as "urine washing", in which the monkey rubs urine on its feet.[74] Urine washing, in which urine is rubbed on the hands and feet, is also used by the Panamanian night monkey.[75] In some cases, strepsirrhines may also anoint themselves with urine.[76]

Hyenas do not raise their legs as canids do when urinating, as urination serves no territorial function for them. Instead, hyenas mark their territories using their anal glands, a trait found also in viverrids and mustelids, but not canids and felids.[77] Unlike other female mammals, female spotted hyenas urinate, copulate, and give birth through an organ called the pseudo-penis.[78][79]

All canids (with the possible exception of dholes[80]) use urine (combined with preputial gland secretions) to mark their territories. Many species of canids, including hoary foxes,[81] cape foxes,[82] and golden jackals,[83] use a raised-leg posture when urinating.[84][85] The scent of their urine is usually strongest in the winter, before the mating season.[85]

Domestic dogs mark their territories by urinating on vertical surfaces (usually at nose level), sometimes marking over the urine of other dogs.[84] When one dog marks over another dog's urine, this is known as "counter-marking" or "overmarking".[86][87] Male dogs urine-mark more frequently than female dogs,[88] typically beginning after the onset of sexual maturity.[89] Male dogs, as well as wolves, sometimes lift a leg and attempt to urinate even when their bladders are empty this is known as a "raised-leg display",[90][91][92][92][93] "shadow-urination",[94] or "pseudo-urination".[95] They typically mark their territory due to the presence of new stimuli or social triggers in a dog's environment, as well as out of anxiety.[96] Marking behavior is present in both male and female dogs, and is especially pronounced in male dogs that have not been neutered.[96]

Raised-leg urination is the most significant form of scent marking in wolves, and is most frequent around the breeding season.[97] Wolves urine-mark more frequently when they detect the scent of other wolves, or other canid species.[98] Leg-lifting is more common in male wolves than female wolves, although dominant females also use the raised-leg posture.[99] Other types of urine-marking in wolves are FLU (flexed-leg urination), STU (standing urination), and SQU (squatting urination).[100] Breeding pairs of wolves will sometimes urinate on the same spot: this is known as "double-marking".[101][102][103][104][105][106] Double-marking is practiced by both coyotes and wolves.,[107][108][109] and also by foxes.[110]

Coyotes mark their territories by urinating on bushes, trees, or rocks.[111] Male coyotes usually lift their legs when scent-marking.[112] However, females sometimes also raise their legs, and males sometimes squat.[113] Urine marking is also associated with pair bonding in coyotes[clarification needed][114] Coyotes sometimes urinate on their food, possibly to claim ownership over it.[115]

Red foxes use their urine to mark their territories.[116][117][118][119][120] A male fox raises one hind leg and his urine is sprayed forward in front of him, whereas a female fox squats down so that the urine is sprayed in the ground between the hind legs.[121][122] Urine is also used to mark empty cache sites, as reminders not to waste time investigating them.[123][124][125] Red foxes use various postures[clarify] to urinate, depending on where they are leaving a scent mark.[121][126]

As in most other canids, male bush dogs lift their hind legs when urinating. However, female bush dogs use a kind of handstand posture, which is less common in other canids.[127][128] When male bush dogs urinate, they create a spray instead of a stream.[129]

Both male and female maned wolves use their urine to communicate, e.g. to mark their hunting paths, or the places where they have buried hunted prey.[130] The urine has a very distinctive smell, which some people liken to hops or cannabis. The responsible substance is very likely a pyrazine, which occurs in both plants.[131] (At the Rotterdam Zoo, this smell once set the police on a hunt for cannabis smokers.[131][132])

Within the Felidae, male felids can urinate backwards by curving the tip of the glans penis backward.[133][134] Urine marking by felids is also known as "spray-urinating"[135] or "spray-marking".[136]To identify their territories, male tigers mark trees by spraying urine[137][138] and anal gland secretions, as well as marking trails with scat. Males show a grimacing face, called the Flehmen response, when identifying a female's reproductive condition by sniffing their urine markings.

Lions use urine to mark their territories. They often scrape the ground while urinating, and the urine often flows in short spurts, instead of flowing continuously. They often urinate on vegetation, or on tree trunks at least one meter high.[139] Male lions spray 120 jets of urine at an angle of 2030 degrees upward, at a range of up to 4 meters behind them.[140]

Male cheetahs mark their territory by urinating on objects that stand out, such as trees, logs, or termite mounds. The whole coalition contributes to the scent. Males will attempt to kill any intruders, and fights result in serious injury or death.[141] When male cheetahs urine-mark their territories, they stand a meter away from a tree or rock surface with the tail raised, pointing the penis either horizontally backward or 60 upward.[142] The odor of cheetah urine (unlike that of other large felids) cannot be easily detected by humans.[136]

Black-footed cats use scent marking throughout their ranges, with males spraying urine up to 12 times an hour.[143]

Media related to Urination at Wikimedia Commons

Read more:
Urination - Wikipedia

Heart – Wikipedia

Heart

The human heart

The heart is a muscular organ in most animals, which pumps blood through the blood vessels of the circulatory system.[1] Blood provides the body with oxygen and nutrients, as well as assists in the removal of metabolic wastes. In humans, the heart is located between the lungs, in the middle compartment of the chest.[3]

In humans, other mammals, and birds, the heart is divided into four chambers: upper left and right atria; and lower left and right ventricles.[4][5] Commonly the right atrium and ventricle are referred together as the right heart and their left counterparts as the left heart. Fish, in contrast, have two chambers, an atrium and a ventricle, while reptiles have three chambers.[5] In a healthy heart blood flows one way through the heart due to heart valves, which prevent backflow.[3] The heart is enclosed in a protective sac, the pericardium, which also contains a small amount of fluid. The wall of the heart is made up of three layers: epicardium, myocardium, and endocardium.[7]

The heart pumps blood with a rhythm determined by a group of pacemaking cells in the sinoatrial node. These generate a current that causes contraction of the heart, traveling through the atrioventricular node and along the conduction system of the heart. The heart receives blood low in oxygen from the systemic circulation, which enters the right atrium from the superior and inferior venae cavae and passes to the right ventricle. From here it is pumped into the pulmonary circulation, through the lungs where it receives oxygen and gives off carbon dioxide. Oxygenated blood then returns to the left atrium, passes through the left ventricle and is pumped out through the aorta to the systemic circulationwhere the oxygen is used and metabolized to carbon dioxide. The heart beats at a resting rate close to 72 beats per minute. Exercise temporarily increases the rate, but lowers resting heart rate in the long term, and is good for heart health.

Cardiovascular diseases (CVD) are the most common cause of death globally as of 2008, accounting for 30% of deaths.[11][12] Of these more than three quarters are a result of coronary artery disease and stroke.[11] Risk factors include: smoking, being overweight, little exercise, high cholesterol, high blood pressure, and poorly controlled diabetes, among others.[13] Cardiovascular diseases frequently do not have symptoms or may cause chest pain or shortness of breath. Diagnosis of heart disease is often done by the taking of a medical history, listening to the heart-sounds with a stethoscope, ECG, and ultrasound.[3] Specialists who focus on diseases of the heart are called cardiologists, although many specialties of medicine may be involved in treatment.[12]

The human heart is situated in the middle mediastinum, at the level of thoracic vertebrae T5-T8. A double-membraned sac called the pericardium surrounds the heart and attaches to the mediastinum.[15] The back surface of the heart lies near the vertebral column, and the front surface sits behind the sternum and rib cartilages.[7] The upper part of the heart is the attachment point for several large blood vessels the venae cavae, aorta and pulmonary trunk. The upper part of the heart is located at the level of the third costal cartilage.[7] The lower tip of the heart, the apex, lies to the left of the sternum (8 to 9cm from the midsternal line) between the junction of the fourth and fifth ribs near their articulation with the costal cartilages.[7]

The largest part of the heart is usually slightly offset to the left side of the chest (though occasionally it may be offset to the right) and is felt to be on the left because the left heart is stronger and larger, since it pumps to all body parts. Because the heart is between the lungs, the left lung is smaller than the right lung and has a cardiac notch in its border to accommodate the heart.[7] The heart is cone-shaped, with its base positioned upwards and tapering down to the apex.[7] An adult heart has a mass of 250350 grams (912oz).[16] The heart is often described as the size of a fist: 12cm (5in) in length, 8cm (3.5in) wide, and 6cm (2.5in) in thickness,[7] although this description is disputed, as the heart is likely to be slightly larger.[17] Well-trained athletes can have much larger hearts due to the effects of exercise on the heart muscle, similar to the response of skeletal muscle.[7]

The heart has four chambers, two upper atria, the receiving chambers, and two lower ventricles, the discharging chambers. The atria open into the ventricles via the atrioventricular valves, present in the atrioventricular septum. This distinction is visible also on the surface of the heart as the coronary sulcus. There is an ear-shaped structure in the upper right atrium called the right atrial appendage, or auricle, and another in the upper left atrium, the left atrial appendage. The right atrium and the right ventricle together are sometimes referred to as the right heart. Similarly, the left atrium and the left ventricle together are sometimes referred to as the left heart. The ventricles are separated from each other by the interventricular septum, visible on the surface of the heart as the anterior longitudinal sulcus and the posterior interventricular sulcus.

The cardiac skeleton is made of dense connective tissue and this gives structure to the heart. It forms the atrioventricular septum which separates the atria from the ventricles, and the fibrous rings which serve as bases for the four heart valves.[20] The cardiac skeleton also provides an important boundary in the heart's electrical conduction system since collagen cannot conduct electricity. The interatrial septum separates the atria and the interventricular septum separates the ventricles.[7] The interventricular septum is much thicker than the interatrial septum, since the ventricles need to generate greater pressure when they contract.[7]

The heart, showing valves, arteries and veins. The white arrows show the normal direction of blood flow.

The heart has four valves, which separate its chambers. One valve lies between each atrium and ventricle, and one valve rests at the exit of each ventricle.[7]

The valves between the atria and ventricles are called the atrioventricular valves. Between the right atrium and the right ventricle is the tricuspid valve. The tricuspid valve has three cusps, which connect to chordae tendinae and three papillary muscles named the anterior, posterior, and septal muscles, after their relative positions. The mitral valve lies between the left atrium and left ventricle. It is also known as the bicuspid valve due to its having two cusps, an anterior and a posterior cusp. These cusps are also attached via chordae tendinae to two papillary muscles projecting from the ventricular wall.

The papillary muscles extend from the walls of the heart to valves by cartilaginous connections called chordae tendinae. These muscles prevent the valves from falling too far back when they close.[23] During the relaxation phase of the cardiac cycle, the papillary muscles are also relaxed and the tension on the chordae tendineae is slight. As the heart chambers contract, so do the papillary muscles. This creates tension on the chordae tendineae, helping to hold the cusps of the atrioventricular valves in place and preventing them from being blown back into the atria.[7] [g]

Two additional semilunar valves sit at the exit of each of the ventricles. The pulmonary valve is located at the base of the pulmonary artery. This has three cusps which are not attached to any papillary muscles. When the ventricle relaxes blood flows back into the ventricle from the artery and this flow of blood fills the pocket-like valve, pressing against the cusps which close to seal the valve. The semilunar aortic valve is at the base of the aorta and also is not attached to papillary muscles. This too has three cusps which close with the pressure of the blood flowing back from the aorta.[7]

The right heart consists of two chambers, the right atrium and the right ventricle, separated by a valve, the tricuspid valve.[7]

The right atrium receives blood almost continuously from the body's two major veins, the superior and inferior venae cavae. A small amount of blood from the coronary circulation also drains into the right atrium via the coronary sinus, which is immediately above and to the middle of the opening of the inferior vena cava.[7] In the wall of the right atrium is an oval-shaped depression known as the fossa ovalis, which is a remnant of an opening in the fetal heart known as the foramen ovale.[7] Most of the internal surface of the right atrium is smooth, the depression of the fossa ovalis is medial, and the anterior surface has prominent ridges of pectinate muscles, which are also present in the right atrial appendage.[7]

The right atrium is connected to the right ventricle by the tricuspid valve.[7] The walls of the right ventricle are lined with trabeculae carneae, ridges of cardiac muscle covered by endocardium. In addition to these muscular ridges, a band of cardiac muscle, also covered by endocardium, known as the moderator band reinforces the thin walls of the right ventricle and plays a crucial role in cardiac conduction. It arises from the lower part of the interventricular septum and crosses the interior space of the right ventricle to connect with the inferior papillary muscle.[7] The right ventricle tapers into the pulmonary trunk, into which it ejects blood when contracting. The pulmonary trunk branches into the left and right pulmonary arteries that carry the blood to each lung. The pulmonary valve lies between the right heart and the pulmonary trunk.[7]

The left heart has two chambers: the left atrium, and the left ventricle, separated by the mitral valve.[7]

The left atrium receives oxygenated blood back from the lungs via one of the four pulmonary veins. The left atrium has an outpouching called the left atrial appendage. Like the right atrium, the left atrium is lined by pectinate muscles.[24] The left atrium is connected to the left ventricle by the mitral valve.[7]

The left ventricle is much thicker as compared with the right, due to the greater force needed to pump blood to the entire body. Like the right ventricle, the left also has trabeculae carneae, but there is no moderator band. The left ventricle pumps blood to the body through the aortic valve and into the aorta. Two small openings above the aortic valve carry blood to the heart itself, the left main coronary artery and the right coronary artery.[7]

The heart wall is made up of three layers: the inner endocardium, middle myocardium and outer epicardium. These are surrounded by a double-membraned sac called the pericardium.

The innermost layer of the heart is called the endocardium. It is made up of a lining of simple squamous epithelium, and covers heart chambers and valves. It is continuous with the endothelium of the veins and arteries of the heart, and is joined to the myocardium with a thin layer of connective tissue.[7] The endocardium, by secreting endothelins, may also play a role in regulating the contraction of the myocardium.[7]

The middle layer of the heart wall is the myocardium, which is the cardiac muscle a layer of involuntary striated muscle tissue surrounded by a framework of collagen. The cardiac muscle pattern is elegant and complex, as the muscle cells swirl and spiral around the chambers of the heart, with the outer muscles forming a figure 8 pattern around the atria and around the bases of the great vessels and the inner muscles forming a figure 8 around the two ventricles and proceeding toward the apex. This complex swirling pattern allows the heart to pump blood more effectively.[7]

There are two types of cells in cardiac muscle: muscle cells which have the ability to contract easily, and pacemaker cells of the conducting system. The muscle cells make up the bulk (99%) of cells in the atria and ventricles. These contractile cells are connected by intercalated discs which allow a rapid response to impulses of action potential from the pacemaker cells. The intercalated discs allow the cells to act as a syncytium and enable the contractions that pump blood through the heart and into the major arteries.[7] The pacemaker cells make up 1% of cells and form the conduction system of the heart. They are generally much smaller than the contractile cells and have few myofibrils which gives them limited contractibility. Their function is similar in many respects to neurons.[7] Cardiac muscle tissue has autorhythmicity, the unique ability to initiate a cardiac action potential at a fixed rate spreading the impulse rapidly from cell to cell to trigger the contraction of the entire heart.[7]

There are specific proteins expressed in cardiac muscle cells.[25][26] These are mostly associated with muscle contraction, and bind with actin, myosin, tropomyosin, and troponin. They include MYH6, ACTC1, TNNI3, CDH2 and PKP2. Other proteins expressed are MYH7 and LDB3 that are also expressed in skeletal muscle.[27]

The pericardium is the sack that surrounds the heart. The tough outer surface of the pericardium is called the fibrous membrane. This is lined by a double inner membrane called the serous membrane that produces pericardial fluid to lubricate the surface of the heart. The part of the serous membrane attached to the fibrous membrane is called the parietal pericardium, while the part of the serous membrane attached to the heart is known as the visceral pericardium. The pericardium is present in order to lubricate its movement against other structures within the chest, to keep the heart's position stabilised within the chest, and to protect the heart from infection.[29]

Heart tissue, like all cells in the body, needs to be supplied with oxygen, nutrients and a way of removing metabolic wastes. This is achieved by the coronary circulation, which includes arteries, veins, and lymphatic vessels. Blood flow through the coronary vessels occurs in peaks and troughs relating to the heart muscle's relaxation or contraction.[7]

Heart tissue receives blood from two arteries which arise just above the aortic valve. These are the left main coronary artery and the right coronary artery. The left main coronary artery splits shortly after leaving the aorta into two vessels, the left anterior descending and the left circumflex artery. The left anterior descending artery supplies heart tissue and the front, outer side, and the septum of the left ventricle. It does this by branching into smaller arteries diagonal and septal branches. The left circumflex supplies the back and underneath of the left ventricle. The right coronary artery supplies the right atrium, right ventricle, and lower posterior sections of the left ventricle. The right coronary artery also supplies blood to the atrioventricular node (in about 90% of people) and the sinoatrial node (in about 60% of people). The right coronary artery runs in a groove at the back of the heart and the left anterior descending artery runs in a groove at the front. There is significant variation between people in the anatomy of the arteries that supply the heart The arteries divide at their furtherst reaches into smaller branches that join together at the edges of each arterial distribution.[7]

The coronary sinus is a large vein that drains into the right atrium, and receives most of the venous drainage of the heart. It receives blood from the great cardiac vein (receiving the left atrium and both ventricles), the posterior cardiac vein (draining the back of the left ventricle), the middle cardiac vein (draining the bottom of the left and right ventricles), and small cardiac veins. The anterior cardiac veins drain the front of the right ventricle and drain directly into the right atrium.[7]

Small lymphatic networks called plexuses exist beneath each of the three layers of the heart. These networks collect into a main left and a main right trunk, which travel up the groove between the ventricles that exists on the heart's surface, receiving smaller vessels as they travel up. These vessels then travel into the atrioventricular groove, and receive a third vessel which drains the section of the left ventricle sitting on the diaphragm. The left vessel joins with this third vessel, and travels along the pulmonary artery and left atrium, ending in the inferior tracheobronchial node. The right vessel travels along the right atrium and the part of the right ventricle sitting on the diaphragm. It usually then travels in front of the ascending aorta and then ends in a brachiocephalic node.

The heart receives nerve signals from the vagus nerve and from nerves arising from the sympathetic trunk. These nerves act to influence, but not control, the heart rate. Sympathetic nerves also influence the force of heart contraction. Signals that travel along these nerves arise from two paired cardiovascular centres in the medulla oblongata. The vagus nerve of the parasympathetic nervous system acts to decrease the heart rate, and nerves from the sympathetic trunk act to increase the heart rate.[7] These nerves form a network of nerves that lies over the heart called the cardiac plexus.[7]

The vagus nerve is a long, wandering nerve that emerges from the brainstem and provides parasympathetic stimulation to a large number of organs in the thorax and abdomen, including the heart. The nerves from the sympathetic trunk emerge through the T1-T4 thoracic ganglia and travel to both the sinoatrial and atrioventricular nodes, as well as to the atria and ventricles. The ventricles are more richly innervated by sympathetic fibers than parasympathetic fibers. Sympathetic stimulation causes the release of the neurotransmitter norepinephrine (also known as noradrenaline) at the neuromuscular junction of the cardiac nerves. This shortens the repolarization period, thus speeding the rate of depolarization and contraction, which results in an increased heart rate. It opens chemical or ligand-gated sodium and calcium ion channels, allowing an influx of positively charged ions.[7] Norepinephrine binds to the beta1 receptor.[7]

The heart is the first functional organ to develop and starts to beat and pump blood at about three weeks into embryogenesis. This early start is crucial for subsequent embryonic and prenatal development.

The heart derives from splanchnopleuric mesenchyme in the neural plate which forms the cardiogenic region. Two endocardial tubes form here that fuse to form a primitive heart tube known as the tubular heart.[35] Between the third and fourth week, the heart tube lengthens, and begins to fold to form an S-shape within the pericardium. This places the chambers and major vessels into the correct alignment for the developed heart. Further development will include the septa and valves formation and remodelling of the heart chambers. By the end of the fifth week the septa are complete and the heart valves are completed by the ninth week.[7]

Before the fifth week, there is an opening in the fetal heart known as the foramen ovale. The foramen ovale allowed blood in the fetal heart to pass directly from the right atrium to the left atrium, allowing some blood to bypass the lungs. Within seconds after birth, a flap of tissue known as the septum primum that previously acted as a valve closes the foramen ovale and establishes the typical cardiac circulation pattern. A depression in the surface of the right atrium remains where the foramen ovale was, called the fossa ovalis.[7]

The embryonic heart begins beating at around 22 days after conception (5 weeks after the last normal menstrual period, LMP). It starts to beat at a rate near to the mother's which is about 7580 beats per minute (bpm). The embryonic heart rate then accelerates and reaches a peak rate of 165185 bpm early in the early 7th week (early 9th week after the LMP).[36][37] After 9 weeks (start of the fetal stage) it starts to decelerate, slowing to around 145 (25) bpm at birth. There is no difference in female and male heart rates before birth.[38]

The heart functions as a pump in the circulatory system to provide a continuous flow of blood throughout the body. This circulation consists of the systemic circulation to and from the body and the pulmonary circulation to and from the lungs. Blood in the pulmonary circulation exchanges carbon dioxide for oxygen in the lungs through the process of respiration. The systemic circulation then transports oxygen to the body and returns carbon dioxide and relatively deoxygenated blood to the heart for transfer to the lungs.[7]

The right heart collects deoxygenated blood from two large veins, the superior and inferior venae cavae. Blood collects in the right and left atrium continuously.[7] The superior vena cava drains blood from above the diaphragm and empties into the upper back part of the right atrium. The inferior vena cava drains the blood from below the diaphragm and empties into the back part of the atrium below the opening for the superior vena cava. Immediately above and to the middle of the opening of the inferior vena cava is the opening of the thin-walled coronary sinus.[7] Additionally, the coronary sinus returns deoxygenated blood from the myocardium to the right atrium. The blood collects in the right atrium. When the right atrium contracts, the blood is pumped through the tricuspid valve into the right ventricle. As the right ventricle contracts, the tricuspid valve closes and the blood is pumped into the pulmonary trunk through the pulmonary valve. The pulmonary trunk divides into pulmonary arteries and progressively smaller arteries throughout the lungs, until it reaches capillaries. As these pass by alveoli carbon dioxide is exchanged for oxygen. This happens through the passive process of diffusion.

In the left heart, oxygenated blood is returned to the left atrium via the pulmonary veins. It is then pumped into the left ventricle through the mitral valve and into the aorta through the aortic valve for systemic circulation. The aorta is a large artery that branches into many smaller arteries, arterioles, and ultimately capillaries. In the capillaries, oxygen and nutrients from blood are supplied to body cells for metabolism, and exchanged for carbon dioxide and waste products.[7] Capillary blood, now deoxygenated, travels into venules and veins that ultimately collect in the superior and inferior vena cavae, and into the right heart.

The cardiac cycle refers to the sequence of events in which the heart contracts and relaxes with every heartbeat. The period of time during which the ventricles contract, forcing blood out into the aorta and main pulmonary artery, is known as systole, while the period during which the ventricles relax and refill with blood is known as diastole. The atria and ventricles work in concert, so in systole when the ventricles are contracting, the atria are relaxed and collecting blood. When the ventricles are relaxed in diastole, the atria contract to pump blood to the ventricles. This coordination ensures blood is pumped efficiently to the body.[7]

At the beginning of the cardiac cycle, the ventricles are relaxing. As they do so, they are filled by blood passing through the open mitral and tricuspid valves. After the ventricles have completed most of their filling, the atria contract, forcing further blood into the ventricles and priming the pump. Next, the ventricles start to contract. As the pressure rises within the cavities of the ventricles, the mitral and tricuspid valves are forced shut. As the pressure within the ventricles rises further, exceeding the pressure with the aorta and pulmonary arteries, the aortic and pulmonary valves open. Blood is ejected from the heart, causing the pressure within the ventricles to fall. Simultaneously, the atria refill as blood flows into the right atrium through the superior and inferior vena cavae, and into the left atrium through the pulmonary veins. Finally, when the pressure within the ventricles falls below the pressure within the aorta and pulmonary arteries, the aortic and pulmonary valves close. The ventricles start to relax, the mitral and tricuspid valves open, and the cycle begins again.

Cardiac output (CO) is a measurement of the amount of blood pumped by each ventricle (stroke volume) in one minute. This is calculated by multiplying the stroke volume (SV) by the beats per minute of the heart rate (HR). So that: CO = SV x HR.[7]The cardiac output is normalized to body size through body surface area and is called the cardiac index.

The average cardiac output, using an average stroke volume of about 70mL, is 5.25 L/min, with a normal range of 4.08.0 L/min.[7] The stroke volume is normally measured using an echocardiogram and can be influenced by the size of the heart, physical and mental condition of the individual, sex, contractility, duration of contraction, preload and afterload.[7]

Preload refers to the filling pressure of the atria at the end of diastole, when they are at their fullest. A main factor is how long it takes the ventricles to fill: if the ventricles contract more frequently, then there is less time to fill and the preload will be less.[7] Preload can also be affected by a person's blood volume. The force of each contraction of the heart muscle is proportional to the preload, described as the Frank-Starling mechanism. This states that the force of contraction is directly proportional to the initial length of muscle fiber, meaning a ventricle will contract more forcefully, the more it is stretched.[7]

Afterload, or how much pressure the heart must generate to eject blood at systole, is influenced by vascular resistance. It can be influenced by narrowing of the heart valves (stenosis) or contraction or relaxation of the peripheral blood vessels.[7]

The strength of heart muscle contractions controls the stroke volume. This can be influenced positively or negatively by agents termed inotropes.[40] These agents can be a result of changes within the body, or be given as drugs as part of treatment for a medical disorder, or as a form of life support, particularly in intensive care units. Inotropes that increase the force of contraction are "positive" inotropes, and include sympathetic agents such as adrenaline, noradrenaline and dopamine.[41] "Negative" inotropes decrease the force of contraction and include calcium channel blockers.[40]

The normal rhythmical heart beat, called sinus rhythm, is established by the sinoatrial node, the heart's pacemaker. Here an electrical signal is created that travels through the heart, causing the heart muscle to contract.

The sinoatrial node is found in the upper part of the right atrium near to the junction with the superior vena cava.[42] The electrical signal generated by the sinoatrial node travels through the right atrium in a radial way that is not completely understood. It travels to the left atrium via Bachmann's bundle, such that the muscles of the left and right atria contract together.[43][44][45] The signal then travels to the atrioventricular node. This is found at the bottom of the right atrium in the atrioventricular septumthe boundary between the right atrium and the left ventricle. The septum is part of the cardiac skeleton, tissue within the heart that the electrical signal cannot pass through, which forces the signal to pass through the atrioventricular node only.[7] The signal then travels along the bundle of His to left and right bundle branches through to the ventricles of the heart. In the ventricles the signal is carried by specialized tissue called the Purkinje fibers which then transmit the electric charge to the heart muscle.[46]

The normal resting heart rate is called the sinus rhythm, created and sustained by the sinoatrial node, a group of pacemaking cells found in the wall of the right atrium. Cells in the sinoatrial node do this by creating an action potential. The cardiac action potential is created by the movement of specific electrolytes into and out of the pacemaker cells. The action potential then spreads to nearby cells.

When the sinoatrial cells are resting, they have a negative charge on their membranes. However a rapid influx of sodium ions causes the membrane's charge to become positive. This is called depolarisation and occurs spontaneously.[7] Once the cell has a sufficiently high charge, the sodium channels close and calcium ions then begin to enter the cell, shortly after which potassium begins to leave it. All the ions travel through ion channels in the membrane of the sinoatrial cells. The potassium and calcium start to move out of and into the cell only once it has a sufficiently high charge, and so are called voltage-gated. Shortly after this, the calcium channels close and potassium channels open, allowing potassium to leave the cell. This causes the cell to have a negative resting charge and is called repolarization. When the membrane potential reaches approximately 60 mV, the potassium channels close and the process may begin again.[7]

The ions move from areas where they are concentrated to where they are not. For this reason sodium moves into the cell from outside, and potassium moves from within the cell to outside the cell. Calcium also plays a critical role. Their influx through slow channels means that the sinoatrial cells have a prolonged "plateau" phase when they have a positive charge. A part of this is called the absolute refractory period. Calcium ions also combine with the regulatory protein troponin C in the troponin complex to enable contraction of the cardiac muscle, and separate from the protein to allow relaxation.[48]

The adult resting heart rate ranges from 60 to 100 bpm. The resting heart rate of a newborn can be 129 beats per minute (bpm) and this gradually decreases until maturity.[49] An athlete's heart rate can be lower than 60 bpm. During exercise the rate can be 150 bpm with maximum rates reaching from 200 to 220 bpm.[7]

The normal sinus rhythm of the heart, giving the resting heart rate, is influenced a number of factors. The cardiovascular centres in the brainstem that control the sympathetic and parasympathetic influences to the heart through the vagus nerve and sympathetic trunk.[50] These cardiovascular centres receive input from a series of receptors including baroreceptors, sensing stretch the stretching of blood vessels and chemoreceptors, sensing the amount of oxygen and carbon dioxide in the blood and its pH. Through a series of reflexes these help regulate and sustain blood flow.[7]

Baroreceptors are stretch receptors located in the aortic sinus, carotid bodies, the venae cavae, and other locations, including pulmonary vessels and the right side of the heart itself. Baroreceptors fire at a rate determined by how much they are stretched, which is influenced by blood pressure, level of physical activity, and the relative distribution of blood. With increased pressure and stretch, the rate of baroreceptor firing increases, and the cardiac centers decrease sympathetic stimulation and increase parasympathetic stimulation . As pressure and stretch decrease, the rate of baroreceptor firing decreases, and the cardiac centers increase sympathetic stimulation and decrease parasympathetic stimulation.[7] There is a similar reflex, called the atrial reflex or Bainbridge reflex, associated with varying rates of blood flow to the atria. Increased venous return stretches the walls of the atria where specialized baroreceptors are located. However, as the atrial baroreceptors increase their rate of firing and as they stretch due to the increased blood pressure, the cardiac center responds by increasing sympathetic stimulation and inhibiting parasympathetic stimulation to increase heart rate. The opposite is also true.[7] Chemoreceptors present in the carotid body or adjacent to the aorta in an aortic body respond to the blood's oxygen, carbon dioxide levels. Low oxygen or high carbon dioxide will stimulate firing of the receptors.

Exercise and fitness levels, age, body temperature, basal metabolic rate, and even a person's emotional state can all affect the heart rate. High levels of the hormones epinephrine, norepinephrine, and thyroid hormones can increase the heart rate. The levels of electrolytes including calcium, potassium, and sodium can also influence the speed and regularity of the heart rate; low blood oxygen, low blood pressure and dehydration may increase it.[7]

Cardiovascular diseases, which include diseases of the heart, are the leading cause of death worldwide.[53] The majority of cardiovascular disease is noncommunicable and related to lifestyle and other factors, becoming more prevalent with ageing.[53] Heart disease is a major cause of death, accounting for an average of 30% of all deaths in 2008, globally.[11] This rate varies from a lower 28% to a high 40% in high-income countries.[12] Doctors that specialise in the heart are called cardiologists. Many other medical professionals are involved in treating diseases of the heart, including doctors such as general practitioners, cardiothoracic surgeons and intensivists, and allied health practitioners including physiotherapists and dieticians.[54]

Coronary artery disease, also known as ischaemic heart disease, is caused by atherosclerosis a build-up of fatty material along the inner walls of the arteries. These fatty deposits known as atherosclerotic plaques narrow the coronary arteries, and if severe may reduce blood flow to the heart.[55] If a narrowing (or stenosis) is relatively minor then the patient may not experience any symptoms. Severe narrowings may cause chest pain (angina) or breathlessness during exercise or even at rest. The thin covering of an atherosclerotic plaque can rupture, exposing the fatty centre to the circulating blood. In this case a clot or thrombus can form, blocking the artery, and restricting blood flow to an area of heart muscle causing a myocardial infarction (a heart attack) or unstable angina. In the worst case this may cause cardiac arrest, a sudden and utter loss of output from the heart. Obesity, high blood pressure, uncontrolled diabetes, smoking and high cholesterol can all increase the risk of developing atherosclerosis and coronary artery disease.[53][55]

Heart failure is defined as a condition in which the heart is unable to pump enough blood to meet the demands of the body.[58] Patients with heart failure may experience breathlessness especially when lying flat, as well as ankle swelling, known as peripheral oedema. Heart failure is the end result of many diseases affecting the heart, but is most commonly associated with ischaemic heart disease, valvular heart disease, or high blood pressure. Less common causes include various cardiomyopathies. Heart failure is frequently associated with weakness of the heart muscle in the ventricles (systolic heart failure), but can also be seen in patients with heart muscle that is strong but stiff (diastolic heart failure). The condition may affect the left ventricle (causing predominantly breathlessness), the right ventricle (causing predominantly swelling of the legs and an elevated jugular venous pressure), or both ventricles. Patients with heart failure are at higher risk of developing dangerous heart rhythm disturbances or arrhythmias.[58]

Cardiomyopathies are diseases affecting the muscle of the heart. Some cause abnormal thickening of the heart muscle (hypertrophic cardiomyopathy), some cause the heart to abnormally expand and weaken (dilated cardiomyopathy), some cause the heart muscle to become stiff and unable to fully relax between contractions (restrictive cardiomyopathy) and some make the heart prone to abnormal heart rhythms (arrhythmogenic cardiomyopathy). These conditions are often genetic and can be inherited, but some such as dilated cardiomyopathy may be caused by damage from toxins such as alcohol. Some cardiomyopathies such as hypertrophic cardiomopathy are linked to a higher risk of sudden cardiac death, particularly in athletes.[7] Many cardiomyopathies can lead to heart failure in the later stages of the disease.[58]

Healthy heart valves allow blood to flow easily in one direction, but prevent it from flowing in the other direction. Diseased heart valves may have a narrow opening and therefore restrict the flow of blood in the forward direction (referred to as a stenotic valve), or may allow blood to leak in the reverse direction (referred to as valvular regurgitation). Valvular heart disease may cause breathlessness, blackouts, or chest pain, but may be asymptomatic and only detected on a routine examination by hearing abnormal heart sounds or a heart murmur. In the developed world, valvular heart disease is most commonly caused by degeneration secondary to old age, but may also be caused by infection of the heart valves (endocarditis). In some parts of the world rheumatic heart disease is a major cause of valvular heart disease, typically leading to mitral or aortic stenosis and caused by the body's immune system reacting to a streptococcal throat infection.[59]

While in the healthy heart, waves of electrical impulses originate in the sinus node before spreading to the rest of the atria, the atrioventricular node, and finally the ventricles (referred to as a normal sinus rhythm), this normal rhythm can be disrupted. Abnormal heart rhythms or arrhythmias may be asymptomatic or may cause palpitations, blackouts, or breathlessness. Some types of arrhythmia such as atrial fibrillation increase the long term risk of stroke.[61]

Some arrhythmias cause the heart to beat abnormally slowly, referred to as a bradycardia or bradyarrhythmia. This may be caused by an abnormally slow sinus node or damage within the cardiac conduction system (heart block).[62] In other arrhythmias the heart may beat abnormally rapidly, referred to as a tachycardia or tachyarrhythmia. These arrhythmias can take many forms and can originate from different structures within the heart some arise from the atria (e.g. atrial flutter), some from the atrioventricular node (e.g. AV nodal re-entrant tachycardia) whilst others arise from the ventricles (e.g. ventricular tachycardia). Some tachyarrhythmias are caused by scarring within the heart (e.g. some forms of ventricular tachycardia), others by an irritable focus (e.g. focal atrial tachycardia), while others are caused by additional abnormal conduction tissue that has been present since birth (e.g. Wolff-Parkinson-White syndrome). The most dangerous form of heart racing is ventricular fibrillation, in which the ventricles quiver rather than contract, and which if untreated is rapidly fatal.[63]

The sack which surrounds the heart, called the pericardium, can become inflamed in a condition known as pericarditis. This condition typically causes chest pain that may spread to the back, and is often caused by a viral infection (glandular fever, cytomegalovirus, or coxsackievirus). Fluid can build up within the pericardial sack, referred to as a pericardial effusion. Pericardial effusions often occur secondary to pericarditis, kidney failure, or tumours, and frequently do not cause any symptoms. However, large effusions or effusions which accumulate rapidly can compress the heart in a condition known as cardiac tamponade, causing breathlessness and potentially fatal low blood pressure. Fluid can be removed from the pericardial space for diagnosis or to relieve tamponade using a syringe in a procedure called pericardiocentesis.

Some people are born with hearts that are abnormal and these abnormalities are known as congenital heart defects. They may range from the relatively minor (e.g. patent foramen ovale, arguably a variant of normal) to serious life-threatening abnormalities (e.g. hypoplastic left heart syndrome). Common abnormalities include those that affect the heart muscle that separates the two side of the heart (a 'hole in the heart' e.g. ventricular septal defect). Other defects include those affecting the heart valves (e.g. congenital aortic stenosis), or the main blood vessels that lead from the heart (e.g. coarctation of the aorta). More complex syndromes are seen that affect more than one part of the heart (e.g. Tetralogy of Fallot).

Some congenital heart defects allow blood that is low in oxygen that would normally be returned to the lungs to instead be pumped back to the rest of the body. These are known as cyanotic congenital heart defects and are often more serious. Major congenital heart defects are often picked up in childhood, shortly after birth, or even before a child is born (e.g. transposition of the great arteries), causing breathlessness and a lower rate of growth. More minor forms of congenital heart disease may remain undetected for many years and only reveal themselves in adult life (e.g. atrial septal defect).[65]

Heart disease is diagnosed by the taking of a medical history, a cardiac examination, and further investigations, including blood tests, echocardiograms, ECGs and imaging. Other invasive procedures such as cardiac catheterisation can also play a role.

The cardiac examination includes inspection, feeling the chest with the hands (palpation) and listening with a stethoscope (auscultation).[68] It involves assessment of signs that may be visible on a person's hands (such as splinter haemorrhages), joints and other areas. A person's pulse is taken, usually at the radial artery near the wrist, in order to assess for the rhythm and strength of the pulse. The blood pressure is taken, using either a manual or automatic sphygmomanometer or using a more invasive measurement from within the artery. Any elevation of the jugular venous pulse is noted. A person's chest is felt for any transmitted vibrations from the heart, and then listened to with a stethoscope.

Typically, healthy hearts have only two audible heart sounds, called S1 and S2. The first heart sound S1, is the sound created by the closing of the atrioventricular valves during ventricular contraction and is normally described as "lub". The second heart sound, S2, is the sound of the semilunar valves closing during ventricular diastole and is described as "dub".[7] Each sound consists of two components, reflecting the slight difference in time as the two valves close.[70] S2 may split into two distinct sounds, either as a result of inspiration or different valvular or cardiac problems.[70] Additional heart sounds may also be present and these give rise to gallop rhythms. A third heart sound, S3 usually indicates an increase in ventricular blood volume. A fourth heart sound S4 is referred to as an atrial gallop and is produced by the sound of blood being forced into a stiff ventricle. The combined presence of S3 and S4 give a quadruple gallop.[7]

Heart murmurs are abnormal heart sounds which can be either related to disease or benign, and there are several kinds. There are normally two heart sounds, and abnormal heart sounds can either be extra sounds, or "murmurs" related to the flow of blood between the sounds. Murmurs are graded by volume, from 1 (the quietest), to 6 (the loudest), and evaluated by their relationship to the heart sounds, position in the cardiac cycle, and additional features such as their radiation to other sites, changes with a person's position, the frequency of the sound as determined by the side of the stethoscope by which they are heard, and site at which they are heard loudest. Murmurs may be caused by damaged heart valves, congenital heart disease such as ventricular septal defects, or may be heard in normal hearts. A different type of sound, a pericardial friction rub can be heard in cases of pericarditis where the inflamed membranes can rub together.

Blood tests play an important role in the diagnosis and treatment of many cardiovascular conditions.

Troponin is a sensitive biomarker for a heart with insufficient blood supply. It is released 46 hours after injury, and usually peaks at about 1224 hours.[41] Two tests of troponin are often taken one at the time of initial presentation, and another within 36 hours,[72] with either a high level or a significant rise being diagnostic. A test for brain natriuretic peptide (BNP) can be used to evaluate for the presence of heart failure, and rises when there is increased demand on the left ventricle. These tests are considered biomarkers because they are highly specific for cardiac disease. Testing for the MB form of creatine kinase provides information about the heart's blood supply, but is used less frequently because it is less specific and sensitive.

Other blood tests are often taken to help understand a person's general health and risk factors that may contribute to heart disease. These often include a full blood count investigating for anaemia, and basic metabolic panel that may reveal any disturbances in electrolytes. A coagulation screen is often required to ensure that the right level of anticoagulation is given. Fasting lipids and fasting blood glucose (or an HbA1c level) are often ordered to evaluate a person's cholesterol and diabetes status, respectively.

Using surface electrodes on the body, it is possible to record the electrical activity of the heart. This tracing of the electrical signal is the electrocardiogram (ECG) or (EKG). An ECG is a bedside test and involves the placement of ten leads on the body. This produces a "12 lead" ECG (three extra leads are calculated mathematically, and one lead is a ground).

There are five prominent features on the ECG: the P wave (atrial depolarisation), the QRS complex (ventricular depolarisation[h]) and the T wave (ventricular repolarisation).[7] As the heart cells contract, they create a current that travels through the heart. A downward deflection on the ECG implies cells are becoming more positive in charge ("depolarising") in the direction of that lead, whereas an upward inflection implies cells are becoming more negative ("repolarising") in the direction of the lead. This depends on the position of the lead, so if a wave of depolarising moved from left to right, a lead on the left would show a negative deflection, and a lead on the right would show a positive deflection. The ECG is a useful tool in detecting rhythm disturbances and in detecting insufficient blood supply to the heart. Sometimes abnormalities are suspected, but not immediately visible on the ECG. Testing when exercising can be used to provoke an abnormality, or an ECG can be worn for a longer period such as a 24-hour Holter monitor if a suspected rhythm abnormality is not present at the time of assessment.

Several imaging methods can be used to assess the anatomy and function of the heart, including ultrasound (echocardiography), angiography, CT scans, MRI and PET. An echocardiogram is an ultrasound of the heart used to measure the heart's function, assess for valve disease, and look for any abnormalities. Echocardiography can be conducted by a probe on the chest ("transthoracic") or by a probe in the esophagus ("transoesophageal"). A typical echocardiography report will include information about the width of the valves noting any stenosis, whether there is any backflow of blood (regurgitation) and information about the blood volumes at the end of systole and diastole, including an ejection fraction, which describes how much blood is ejected from the left and right ventricles after systole. Ejection fraction can then be obtained by dividing the volume ejected by the heart (stroke volume) by the volume of the filled heart (end-diastolic volume).[77] Echocardiograms can also be conducted under circumstances when the body is more stressed, in order to examine for signs of lack of blood supply. This cardiac stress test involves either direct exercise, or where this is not possible, injection of a drug such as dobutamine.

CT scans, chest X-rays and other forms of imaging can help evaluate the heart's size, evaluate for signs of pulmonary oedema, and indicate whether there is fluid around the heart. They are also useful for evaluating the aorta, the major blood vessel which leaves the heart.

Diseases affecting the heart can be treated by a variety of methods including lifestyle modification, drug treatment, and surgery.

Narrowings of the coronary arteries (ischaemic heart disease) are treated to relieve symptoms of chest pain caused by a partially narrowed artery (angina pectoris), to minimise heart muscle damage when an artery is completely occluded (myocardial infarction), or to prevent a myocardial infarction from occurring. Medications to improve angina symptoms include nitroglycerin, beta blockers, and calcium channel blockers, while preventative treatments include antiplatelets such as aspirin and statins, lifestyle measures such as stopping smoking and weight loss, and treatment of risk factors such as high blood pressure and diabetes.[78]

In addition to using medications, narrowed heart arteries can be treated by expanding the narrowings or redirecting the flow of blood to bypass an obstruction. This may be performed using a percutaneous coronary intervention, during which narrowings can be expanded by passing small balloon-tipped wires into the coronary arteries, inflating the balloon to expand the narrowing, and sometimes leaving behind a metal scaffold known as a stent to keep the artery open.[79]

If the narrowings in coronary arteries are unsuitable for treatment with a percutaneous coronary intervention, open surgery may be required. A coronary artery bypass graft can be performed, whereby a blood vessel from another part of the body (the saphenous vein, radial artery, or internal mammary artery) is used to redirect blood from a point before the narrowing (typically the aorta) to a point beyond the obstruction.[79]

Diseased heart valves that have become abnormally narrow or abnormally leaky may require surgery. This is traditionally performed as an open surgical procedure to replace the damaged heart valve with a tissue or metallic prosthetic valve. In some circumstances, the tricuspid or mitral valves can be repaired surgically, avoiding the need for a valve replacement. Heart valves can also be treated percutaneously, using techniques that share many similarities with percutaneous coronary intervention. Transcatheter aortic valve replacement is increasingly used for patients consider very high risk for open valve replacement.[59]

Abnormal heart rhythms (arrhythmias) can be treated using antiarrhythmic drugs. These may work by manipulating the flow of electrolytes across the cell membrane (such as calcium channel blockers, sodium channel blockers, amiodarone, or digoxin), or modify the autonomic nervous system's effect on the heart (beta blockers and atropine). In some arrhythmias such as atrial fibrillation which increase the risk of stroke, this risk can be reduced using anticoagulants such as warfarin or novel oral anticoagualants.[61]

If medications fail to control an arrhythmia, another treatment option may be catheter ablation. In these procedures, wires are passed from a vein or artery in the leg to the heart to find the abnormal area of tissue that is causing the arrhythmia. The abnormal tissue can be intentionally damaged, or ablated, by heating or freezing to prevent further heart rhythm disturbances. Whilst the majority of arrhythmias can be treated using minimally invasive catheter techniques, some arrhythmias (particularly atrial fibrillation) can also be treated using open or thoracoscopic surgery, either at the time of other cardiac surgery or as a standalone procedure. A cardioversion, whereby an electric shock is used to stun the heart out of an abnormal rhythm, may also be used.

Cardiac devices in the form of pacemakers or implantable defibrillators may also be required to treat arrhythmias. Pacemakers, comprising a small battery powered generator implanted under the skin and one or more leads that extend to the heart, are most commonly used to treat abnormally slow heart rhythms.[62] Implantable defibrillators are used to treat serious life-threatening rapid heart rhythms. These devices monitor the heart, and if dangerous heart racing is detected can automatically deliver a shock to restore the heart to a normal rhythm. Implantable defibrillators are most commonly used in patients with heart failure, cardiomyopathies, or inherited arrhythmia syndromes.

As well as addressing the underlying cause for a patient's heart failure (most commonly ischaemic heart disease or hypertension), the mainstay of heart failure treatment is with medication. These include drugs to prevent fluid from accumulating in the lungs by increasing the amount of urine a patient produces (diuretics), and drugs that attempt to preserve the pumping function of the heart (beta blockers, ACE inhibitors and mineralocorticoid receptor antagonists).[58]

In some patients with heart failure, a specialised pacemaker known as cardiac resynchronisation therapy can be used to improve the heart's pumping efficiency.[62] These devices are frequently combined with a defibrillator. In very severe cases of heart failure, a small pump called a ventricular assist device may be implanted which supplements the heart's own pumping ability. In the most severe cases, a cardiac transplant may be considered.[58]

Humans have known about the heart since ancient times, although its precise function and anatomy were not clearly understood.[81] From the primarily religious views of earlier societies towards the heart, ancient Greeks are considered to have been the primary seat of scientific understanding of the heart in the ancient world.[82][83][84] Aristotle considered the heart to be organ responsible for creating blood; Plato considered the heart as the source of circulating blood and Hippocrates noted blood circulating cyclically from the body through the heart to the lungs.[82][84] Erasistratos (304250 BCE) noted the heart as a pump, causing dilation of blood vessels, and noted that arteries and veins both radiate from the heart, becoming progressively smaller with distance, although he believed they were filled with air and not blood. He also discovered the heart valves.[82]

The Greek physician Galen (2nd century CE) knew blood vessels carried blood and identified venous (dark red) and arterial (brighter and thinner) blood, each with distinct and separate functions.[82] Galen, noting the heart as the hottest organ in the body, concluded that it provided heat to the body.[84] The heart did not pump blood around, the heart's motion sucked blood in during diastole and the blood moved by the pulsation of the arteries themselves.[84] Galen believed the arterial blood was created by venous blood passing from the left ventricle to the right through 'pores' between the ventricles.[81] Air from the lungs passed from the lungs via the pulmonary artery to the left side of the heart and created arterial blood.[84]

These ideas went unchallenged for almost a thousand years.[81][84]

The earliest descriptions of the coronary and pulmonary circulation systems can be found in the Commentary on Anatomy in Avicenna's Canon, published in 1242 by Ibn al-Nafis.[85] In his manuscript, al-Nafis wrote that blood passes through the pulmonary circulation instead of moving from the right to the left ventricle as previously believed by Galen.[86] His work was later translated into Latin by Andrea Alpago.[87]

In Europe, the teachings of Galen continued to dominate the academic community and his doctrines were adopted as the official canon of the Church. Andreas Vesalius questioned some of Galen's beliefs of the heart in De humani corporis fabrica (1543), but his magnum opus was interpreted as a challenge to the authorities and he was subjected to a number of attacks.[88] Michael Servetus wrote in Christianismi Restitutio (1553) that blood flows from one side of the heart to the other via the lungs.[88]

A breakthrough in understanding the flow of blood through the heart and body came with the publication of De Motu Cordis (1628) by the English physician William Harvey. Harvey's book completely describes the systemic circulation and the mechanical force of the heart, leading to an overhaul of the Galenic doctrines.[84] Otto Frank (18651944) was a German physiologist; among his many published works are detailed studies of this important heart relationship. Ernest Starling (18661927) was an important English physiologist who also studied the heart. Although they worked largely independently, their combined efforts and similar conclusions have been recognized in the name "FrankStarling mechanism".[7]

Although Purkinje fibers and the bundle of His were discovered as early as the 19th century, their specific role in the electrical conduction system of the heart remained unknown until Sunao Tawara published his monograph, titled Das Reizleitungssystem des Sugetierherzens, in 1906. Tawara's discovery of the atrioventricular node prompted Arthur Keith and Martin Flack to look for similar structures in the heart, leading to their discovery of the sinoatrial node several months later. These structures form the anatomical basis of the electrocardiogram, whose inventor, Willem Einthoven, was awarded the Nobel Prize in Medicine or Physiology in 1924.[89]

The first successful heart transplantation was performed in 1967 by the South African surgeon Christiaan Barnard at Groote Schuur Hospital in Cape Town. This marked an important milestone in cardiac surgery, capturing the attention of both the medical profession and the world at large. However, long-term survival rates of patients were initially very low. Louis Washkansky, the first recipient of a donated heart, died 18 days after the operation while other patients did not survive for more than a few weeks.[90] The American surgeon Norman Shumway has been credited for his efforts to improve transplantation techniques, along with pioneers Richard Lower, Vladimir Demikhov and Adrian Kantrowitz. As of March 2000, more than 55,000 heart transplantations have been performed worldwide.[91]

By the middle of the 20th century, heart disease had surpassed infectious disease as the leading cause of death in the United States, and it is currently the leading cause of deaths worldwide. Since 1948, the ongoing Framingham Heart Study has shed light on the effects of various influences on the heart, including diet, exercise, and common medications such as aspirin. Although the introduction of ACE inhibitors and beta blockers has improved the management of chronic heart failure, the disease continues to be an enormous medical and societal burden, with 30 to 40% of patients dying within a year of receiving the diagnosis.[92]

As one of the vital organs, the heart was long identified as the center of the entire body, the seat of life, or emotion, or reason, will, intellect, purpose or the mind.[93] The heart is an emblematic symbol in many religions, signifying "truth, conscience or moral courage in many religions the temple or throne of God in Islamic and Judeo-Christian thought; the divine centre, or atman, and the third eye of transcendent wisdom in Hinduism; the diamond of purity and essence of the Buddha; the Taoist centre of understanding."[93]

In the Hebrew Bible, the word for heart, lev, is used in these meanings, as the seat of emotion, the mind, and referring to the anatomical organ. It is also connected in function and symbolism to the stomach.[94]

An important part of the concept of the soul in Ancient Egyptian religion was thought to be the heart, or ib. The ib or metaphysical heart was believed to be formed from one drop of blood from the child's mother's heart, taken at conception.[95] To ancient Egyptians, the heart was the seat of emotion, thought, will, and intention. This is evidenced by Egyptian expressions which incorporate the word ib, such as Awi-ib for "happy" (literally, "long of heart"), Xak-ib for "estranged" (literally, "truncated of heart").[96] In Egyptian religion, the heart was the key to the afterlife. It was conceived as surviving death in the nether world, where it gave evidence for, or against, its possessor. It was thought that the heart was examined by Anubis and a variety of deities during the Weighing of the Heart ceremony. If the heart weighed more than the feather of Maat, which symbolized the ideal standard of behavior. If the scales balanced, it meant the heart's possessor had lived a just life and could enter the afterlife; if the heart was heavier, it would be devoured by the monster Ammit.[97]

The Chinese character for "heart", , derives from a comparatively realistic depiction of a heart (indicating the heart chambers) in seal script.[98] The Chinese word xn also takes the metaphorical meanings of "mind", "intention", or "core".[99] In Chinese medicine, the heart is seen as the center of shn "spirit, consciousness".[100] The heart is associated with the small intestine, tongue, governs the six organs and five viscera, and belongs to fire in the five elements.[101]

Originally posted here:
Heart - Wikipedia

Anatomy & Physiology – The Biology Corner

Anatomy...from the Greek word anatome,"dissection", is a branch of natural science dealing with the structural organization of living things. As one of the basic life sciences, anatomy is closely related to medicine and to other branches of biology.

This site is meant to compliment a high school level anatomy class. It contains worksheets, images, study guides and practice quizzes to support a rich curriculum in anatomy and physiology.

Specifically, this class was designed for students at Granite City High School, though other students and teachers may benefit from the resources included here.

Read the original post:
Anatomy & Physiology - The Biology Corner

Free Physiology Books Download | Ebooks Online Textbooks

This section contains free e-books and guides on Physiology, some of the resources in this section can be viewed online and some of them can be downloaded. Introductory Human PhysiologyDr. Robert DroualOnline | NA Pages | EnglishThis note describes the following topics: The Cell: Structure and Function, Cell Metabolism, Cell Membrane Transport, Chemical Messengers, Endocrine System, Nerve Cells and Electric Signaling, Synaptic Transmission and Neural Integration, Sensory, Autonomic and Motor Nervous System, Muscle Physiology, Cardiac Function, Blood Vessels, Blood Flow, and Blood Pressure, Respiratory System, Urinary System, Reproductive System and The Digestive System.

See the article here:
Free Physiology Books Download | Ebooks Online Textbooks

Anatomy & Physiology I & II – OLI

UNIT 1: Welcome to CC-OLI Anatomy and Physiology

Module 1: How to Succeed in Anatomy and Physiology

UNIT 2: Introduction to Anatomy and Physiology

Module 2: Anatomy and Physiology Introduction

Quiz: Vital Functions and Body Orientation

Module 3: Introduction of Systems

Quiz: Introduction of Body Systems

UNIT 3: Levels of Organization

Module 4: Levels of Organization IntroductionModule 5: Chemistry

Quiz: Levels of Organization Chemistry

Module 6: The Cell

Quiz: Levels of Organization Cells

Module 7: Higher Order Structures

Quiz: Levels of Organization Cells

UNIT 4: Homeostasis

Module 8: Homeostasis and Feedback Loops

Quiz: Homeostasis and Feedback Loops

Module 9: Homeostatic Maintenance

Quiz: Homeostatic Maintenance

Module 10: Integration of Systems

Quiz: Homeostasis Integration of Systems

UNIT 5: Skeletal System

Module 11: Skeletal System Introduction

Quiz: Skeletal System Introduction

Module 12: Skeletal Structures and Functions

Quiz: Skeletal Structures and Functions

Module 13: Skeletal Levels of Organization

Quiz: Skeletal Levels of Organization

Module 14: Skeletal Homeostasis

Quiz: Skeletal Homeostasis

Module 15: Skeletal Integration of Systems

Quiz: Skeletal Integration of Systems

UNIT 6: Muscular System

Module 16: Muscular System Introduction

Quiz: Muscular System Introduction

Module 17: Muscular Structures and Functions

Quiz: Muscular System: Muscular Structures and Functions

Module 18: Muscular Levels of Organization

Quiz: Skeletal Structures and Functions

Module 19: Muscular Homeostasis

Module 20: Muscular Integration of Systems

UNIT 7: Integumentary System

Module 21: Integumentary System Introduction

Quiz: Integumentary System: Introduction

Module 22: Integumentary Structures and Functions

Quiz: Integumentary System: Integumentary Levels of Organization

Module 23: Integumentary Levels of Organization

Module 24: Integumentary System Homeostasis

Quiz: Integumentary System: Integumentary System Homeostasis

UNIT 8: Endocrine System

Module 25: Endocrine Structures and Functions

Quiz: Endocrine Structures and Functions

Module 26: Endocrine Levels of Organization

Quiz: Endocrine Levels of Organization

Module 27: Endocrine System Homeostasis and Integration of Systems

Quiz: Endocrine System Homeostasis and Integration of Systems

Quiz: Endocrine System Unit

UNIT 9: Digestive System

Module 28: Digestive System Introduction

Module 29: Digestive Structures and Functions

Quiz: Digestive Structures and Functions

Module 30: Digestive Levels of Organization

Quiz: Digestive Levels of Organization

Module 31: Digestive Homeostasis

Quiz: Digestive Homeostasis

Module 32: Digestive System Integration of Systems

Quiz: Digestive System Unit Exam

UNIT 10: Cardiovascular System

Module 33: Cardiovascular System Introduction

Quiz: Cardiovascular System: Introduction

Module 34: Cardiovascular Structures and Functions

Quiz: Cardiovascular System: Structures and Functions

Module 35: Cardiovascular Levels of Organization

Quiz: Cardiovascular System: Levels of Organization

Module 36: Cardiovascular Homeostasis

Quiz: Cardiovascular System: Homeostasis

Module 37: Cardiovascular System Integration of Systems

Quiz: Cardiovascular System: Integration of Systems 1

Quiz: Cardiovascular System: Integration of Systems 2

UNIT 11: Respiratory System

Module 38: Respiratory System Introduction

Module 39: Respiratory Structures and Functions

Quiz: Respiratory Structures and Functions

Module 40: Respiratory Levels of Organization

Quiz: Respiratory Levels of Organization

Module 41: Respiratory Homeostasis

Module 42: Respiratory System Integration of Systems

UNIT 12: Urinary System

Module 43: Urinary System Introduction

Module 44: Urinary Structures and Functions

Quiz: Urinary Structures and Functions

Module 45: Urinary Levels of Organization

Quiz: Urinary Levels of Organization

Module 46: Urinary Homeostasis

Module 47: Urinary System Integration of Systems

UNIT 13: Lymphatic System

Module 48: Lymphatic System Introduction

Module 49: Lymphatic Structures and Functions

Quiz: Lymphatic System and Immunity: Structures and Functions

Module 50: Lymphatic Levels of Organization

Read the original here:
Anatomy & Physiology I & II - OLI

Physiology dictionary definition | physiology defined

The scientific study of an organism's vital functions, including growth and development, the absorption and processing of nutrients, the synthesis and distribution of proteins and other organic molecules, and the functioning of different tissues, organs, and other anatomic structures. Physiology studies the normal mechanical, physical, and biochemical processes of animals and plants.

Read this article:
Physiology dictionary definition | physiology defined

Physiology | Medical College of Wisconsin

The Department of Physiology at the Medical College of Wisconsin is dedicated to quality in research, graduate and postdoctoral training, and medical education. The research interests of our faculty are broadly based, with strong programs in cardiovascular physiology, renal physiology, respiratory physiology, physiological genomics, proteomics, bioinformatics, and computational biology.Read more about the Department of Physiology

The research programs in this department are multidisciplinary and are tightly integrated with several Research Centers on the MCW campus:

There is a long history of quality graduate education in the Department of Physiology at the Medical College of Wisconsin. Our graduates are successful scientists in universities, pharmaceutical companies, and government. The size of our program encourages the development of close working relationships between students and faculty. Every effort is made to optimize and tailor our training programs to meet individual student needs in preparation for successful careers.

See the rest here:
Physiology | Medical College of Wisconsin

Frontiers in Physiology

The specialty sections of Frontiers in Physiology welcome submission of the following article types: Book Review, Brief Research Report, Case Report, Clinical Trial, Correction, Data Report, Editorial, Hypothesis and Theory, Methods, Mini Review, Opinion, Original Research, Perspective, Protocols, Review, Specialty Grand Challenge, Systematic Review, Technology Report, Clinical Study Protocol, General Commentary, Policy and Practice Reviews, Code and Policy Brief.

When submitting a manuscript to Frontiers in Physiology, authors must submit the material directly to one of the specialty sections. Manuscripts are peer-reviewed by the Associate and Review Editors of the respective specialty section.

Articles published in the specialty sections above will benefit from the Frontiers impact and tiering system after online publication. Authors of published original research with the highest impact, as judged democratically by the readers, will be invited by the Chief Editor to write a Frontiers Focused Review - a tier-climbing article. This is referred to as "democratic tiering". The author selection is based on article impact analytics of original research published in the Frontiers specialty journals and sections. Focused Reviews are centered on the original discovery, place it into a broader context, and aim to address the wider community across all of Physiology.

Continue reading here:
Frontiers in Physiology