Category Archives: Neuroscience

About Neuroscience | Department of Neuroscience | Georgetown University

What is Neuroscience

neuroscience n(y)oorsns/ noun

any or all of the sciences, such as neurochemistry and experimental psychology, which deal with the structure or function of the nervous system and brain.

Neuroscience, also known asNeural Science, is the study of how the nervous system develops, its structure, and what it does. Neuroscientists focus on the brain and its impact on behavior and cognitive functions. Not only is neuroscience concerned with the normal functioning of the nervous system, but also what happens to the nervous system when people have neurological, psychiatric and neurodevelopmental disorders.

Neuroscienceis often referred to in the plural, as neurosciences.

Neuroscience has traditionally been classed as a subdivision of biology. These days, it is an interdisciplinary science which liaises closely with other disciplines, such as mathematics, linguistics, engineering, computer science, chemistry, philosophy, psychology, and medicine.

Many researchers say that neuroscience means the same as neurobiology. However, neurobiology looks at the biology of the nervous system, while neuroscience refers to anything to do with the nervous system.

Neuroscientists are involved in a much wider scope of fields today than before. They study the cellular, functional, evolutionary, computational, molecular, cellular and medical aspects of the nervous system.

The following branches of neuroscience, based on research areas and subjects of study can be broadly categorized in the following disciplines (neuroscientists usually cover several branches at the same time):

Affective neuroscience- in most cases, research is carried out on laboratory animals and looks at how neurons behave in relation to emotions.

Behavioral neuroscience- the study of the biological bases of behavior. Looking at how the brain affects behavior.

Cellular neuroscience- the study of neurons, including their form and physiological properties at cellular level.

Clinical neuroscience- looks at the disorders of the nervous system, while psychiatry, for example, looks at the disorders of the mind.

Cognitive neuroscience- the study of higher cognitive functions that exist in humans, and their underlying neural bases. Cognitive neuroscience draws from linguistics, neuroscience, psychology and cognitive science. Cognitive neuroscientists can take two broad directions; behavioral/experimental or computational/modeling, the aim being to understand the nature of cognition from a neural point of view.

Computational neuroscience- attempting to understand how brains compute, using computers to simulate and model brain functions, and applying techniques from mathematics, physics and other computational fields to study brain function.

Cultural neuroscience- looks at how beliefs, practices and cultural values are shaped by and shape the brain, minds and genes over different periods.

Developmental neuroscience- looks at how the nervous system develops on a cellular basis; what underlying mechanisms exist in neural development.

Molecular neuroscience- the study of the role of individual molecules in the nervous system.

Neuroengineering- using engineering techniques to better understand, replace, repair, or improve neural systems.

Neuroimaging- a branch of medical imaging that concentrates on the brain. Neuroimaging is used to diagnose disease and assess the health of the brain. It can also be useful in the study of the brain, how it works, and how different activities affect the brain.

Neuroinformatics- integrates data across all areas of neuroscience, to help understand the brain and treat diseases. Neuroinformatics involves acquiring data, sharing, publishing and storing information, analysis, modeling, and simulation.

Neurolinguistics- studying what neural mechanisms in the brain control the acquisition, comprehension and utterance of language.

Neurophysiology- looks at the relationship of the brain and its functions, and the sum of the body's parts and how they interrelate. The study of how the nervous system functions, typically using physiological techniques, such as stimulation with electrodes, light-sensitive channels, or ion- or voltage-sensitive dyes.

Paleoneurology- the study of the brain using fossils.

Social neuroscience- this is an interdisciplinary field dedicated to understanding how biological systems implement social processes and behavior. Social neuroscience gathers biological concepts and methods to inform and refine theories of social behavior. It uses social and behavioral concepts and data to refine neural organization and function theories.

Systems neuroscience- follows the pathways of data flow within the CNS (central nervous system) and tries to define the kinds of processing going on there. It uses that information to explain behavioral functions.

Written by: Christian Nordqvist This article can be viewed in full at Medical News Today

See original here:
About Neuroscience | Department of Neuroscience | Georgetown University

Neuroscience Graduate Programs – gradschools.com

San Antonio, TX University of Texas Health Science Center At San Antonio Cell Biology, Genetics, and Molecular Medicine

Cell Biology, Genetics & Molecular Medicine (CGM) includes courses can be individually tailored to a specific student's interests including aging, cancer, genetics, immunology, neuroscience, metabolism and physiology.

Program: Hybrid

Degree: Master, Doctorate

Follow this link:
Neuroscience Graduate Programs - gradschools.com

Neuroscience | UCLA Graduate Programs

UCLA's Graduation Program in Neuroscience offers the following degree(s):

Doctor of Philosophy (Ph.D.)

With questions not answered here or on the programs site (above), please contact the program directly.

Neuroscience Graduate Program at UCLA 1506D Gonda Center Box 951761 Los Angeles, CA 90095-1761

Visit the Neurosciences faculty roster

Visit the registrar's site for the Neurosciences course descriptions

(310) 825-8153

neurophd@mednet.ucla.edu

004F

Go here to see the original:
Neuroscience | UCLA Graduate Programs

Neuroscience Program

The Interdepartmental Program in Neuroscience (IPN) at George Mason brings together experimental and theoretical scientists.

It draws from research in many departments -- Psychology, Molecular Neuroscience, Molecular and Microbiology, Electrical Engineering, Physics and Astronomy, and Computational Biology and Bioinformatics.

More:
Neuroscience Program

Neuroscience Graduate Programs – Graduate School | Masters …

San Antonio, TX University of Texas Health Science Center At San Antonio Cell Biology, Genetics, and Molecular Medicine

Cell Biology, Genetics & Molecular Medicine (CGM) includes courses can be individually tailored to a specific student's interests including aging, cancer, genetics, immunology, neuroscience, metabolism and physiology.

Program: Hybrid

Degree: Master, Doctorate

Here is the original post:
Neuroscience Graduate Programs - Graduate School | Masters ...

History of neuroscience – Wikipedia

From the ancient Egyptian mummifications to 18th century scientific research on "globules" and neurons, there is evidence of neuroscience practice throughout the early periods of history. The early civilizations lacked adequate means to obtain knowledge about the human brain. Their assumptions about the inner workings of the mind, therefore, were not accurate. Early views on the function of the brain regarded it to be a form of "cranial stuffing" of sorts. In ancient Egypt, from the late Middle Kingdom onwards, in preparation for mummification, the brain was regularly removed, for it was the heart that was assumed to be the seat of intelligence. According to Herodotus, during the first step of mummification: "The most perfect practice is to extract as much of the brain as possible with an iron hook, and what the hook cannot reach is mixed with drugs." Over the next five thousand years, this view came to be reversed; the brain is now known to be the seat of intelligence, although colloquial variations of the former remain as in "memorizing something by heart".

The Edwin Smith Surgical Papyrus, written in the 17th century BC, contains the earliest recorded reference to the brain. The hieroglyph for brain, occurring eight times in this papyrus, describes the symptoms, diagnosis, and prognosis of two patients, wounded in the head, who had compound fractures of the skull. The assessments of the author (a battlefield surgeon) of the papyrus allude to ancient Egyptians having a vague recognition of the effects of head trauma. While the symptoms are well written and detailed, the absence of a medical precedent is apparent. The author of the passage notes "the pulsations of the exposed brain" and compared the surface of the brain to the rippling surface of copper slag (which indeed has a gyral-sulcal pattern). The laterality of injury was related to the laterality of symptom, and both aphasia ("he speaks not to thee") and seizures ("he shutters exceedingly") after head injury were described. Observations by ancient civilizations of the human brain suggest only a relative understanding of the basic mechanics and the importance of cranial security. Furthermore, considering the general consensus of medical practice pertaining to human anatomy was based on myths and superstition, the thoughts of the battlefield surgeon appear to be empirical and based on logical deduction and simple observation.[1][2]

During the second half of the first millennium BC, the Ancient Greeks developed differing views on the function of the brain. However, due to the fact that Hippocratic doctors did not practice dissection, because the human body was considered sacred, Greek views of brain function were generally uninformed by anatomical study. It is said that it was the Pythagorean Alcmaeon of Croton (6th and 5th centuries BC) who first considered the brain to be the place where the mind was located. According to ancient authorities, "he believed the seat of sensations is in the brain. This contains the governing faculty. All the senses are connected in some way with the brain; consequently they are incapable of action if the brain is disturbed...the power of the brain to synthesize sensations makes it also the seat of thought: The storing up of perceptions gives memory and belief and when these are stabilized you get knowledge."[2] In the 4th century BC Hippocrates, believed the brain to be the seat of intelligence (based, among others before him, on Alcmaeon's work). During the 4th century BC Aristotle thought that, while the heart was the seat of intelligence, the brain was a cooling mechanism for the blood. He reasoned that humans are more rational than the beasts because, among other reasons, they have a larger brain to cool their hot-bloodedness.[3]

In contrast to Greek thought regarding the sanctity of the human body, the Egyptians had been embalming their dead for centuries, and went about the systematic study of the human body. During the Hellenistic period, Herophilus of Chalcedon (c.335/330280/250 BC) and Erasistratus of Ceos (c. 300240 BC) made fundamental contributions not only to brain and nervous systems' anatomy and physiology, but to many other fields of the bio-sciences. Herophilus not only distinguished the cerebrum and the cerebellum, but provided the first clear description of the ventricles. Erasistratus used practical application by experimenting on the living brain. Their works are now mostly lost, and we know about their achievements due mostly to secondary sources. Some of their discoveries had to be re-discovered a millennium after their death.[2]

During the Roman Empire, the Greek anatomist Galen dissected the brains of sheep, monkeys, dogs, swine, among other non-human mammals. He concluded that, as the cerebellum was denser than the brain, it must control the muscles, while as the cerebrum was soft, it must be where the senses were processed. Galen further theorized that the brain functioned by movement of animal spirits through the ventricles. "Further, his studies of the cranial nerves and spinal cord were outstanding. He noted that specific spinal nerves controlled specific muscles, and had the idea of the reciprocal action of muscles. For the next advance in understanding spinal function we must await Bell and Magendie in the 19th Century."[2][3]

Andreas Vesalius noted many structural characteristics of both the brain and general nervous system during his dissections of human cadavers.[4] In addition to recording many anatomical features such as the putamen and corpus collusum, Vesalius proposed that the brain was made up of seven pairs of 'brain nerves', each with a specialized function. Other scientists including Leonardo da Vinci furthered Vesalius' work by adding their own detailed sketches of the human brain. Ren Descartes also studied the physiology of the brain, proposing the theory of dualism to tackle the issue of the brain's relation to the mind. He suggested that the pineal gland was where the mind interacted with the body after recording the brain mechanisms responsible for circulating cerebrospinal fluid.[5]Thomas Willis studied the brain, nerves, and behavior to develop neurologic treatments. He described in great detail the structure of the brainstem, the cerebellum, the ventricles, and the cerebral hemispheres.

The role of electricity in nerves was first observed in dissected frogs by Luigi Galvani in the second half of the 18th century. In the 1820s, Jean Pierre Flourens pioneered the experimental method of carrying out localized lesions of the brain in animals describing their effects on motricity, sensibility and behavior. Richard Caton presented his findings in 1875 about electrical phenomena of the cerebral hemispheres of rabbits and monkeys. Studies of the brain became more sophisticated after the invention of the microscope and the development of a staining procedure by Camillo Golgi during the late 1890s that used a silver chromate salt to reveal the intricate structures of single neurons. His technique was used by Santiago Ramn y Cajal and led to the formation of the neuron doctrine, the hypothesis that the functional unit of the brain is the neuron. Golgi and Ramn y Cajal shared the Nobel Prize in Physiology or Medicine in 1906 for their extensive observations, descriptions and categorizations of neurons throughout the brain. The hypotheses of the neuron doctrine were supported by experiments following Galvani's pioneering work in the electrical excitability of muscles and neurons. In the late 19th century, Emil du Bois-Reymond, Johannes Peter Mller, and Hermann von Helmholtz showed neurons were electrically excitable and that their activity predictably affected the electrical state of adjacent neurons.

In parallel with this research, work with brain-damaged patients by Paul Broca suggested that certain regions of the brain were responsible for certain functions.[6]

Neuroscience during the twentieth century began to be recognized as a distinct unified academic discipline, rather than studies of the nervous system being a factor of science belonging to a variety of disciplines.

Broca's hypothesis was supported by observations of epileptic patients conducted by John Hughlings Jackson, who correctly deduced the organization of motor cortex by watching the progression of seizures through the body. Carl Wernicke further developed the theory of the specialization of specific brain structures in language comprehension and production. Modern research still uses the Korbinian Brodmann's cytoarchitectonic (referring to study of cell structure) anatomical definitions from this era in continuing to show that distinct areas of the cortex are activated in the execution of specific tasks.[6]Eric Kandel and collaborators have cited David Rioch, Francis O. Schmitt, and Stephen Kuffler as having played critical roles in establishing the field.[7] Rioch originated the integration of basic anatomical and physiological research with clinical psychiatry at the Walter Reed Army Institute of Research, starting in the 1950s. During the same period, Schmitt established a neuroscience research program within the Biology Department at the Massachusetts Institute of Technology, bringing together biology, chemistry, physics, and mathematics. The first freestanding neuroscience department (then called Psychobiology) was founded in 1964 at the University of California, Irvine by James L. McGaugh. Kuffler started the Department of Neuroscience at Harvard Medical School in 1966.

Read the original here:
History of neuroscience - Wikipedia

Neuroscience Care at OhioHealth | Columbus Neurology and …

Multiple Sclerosis

At OhioHealth, patients with multiple sclerosis (MS) have access to personalized care all in one place by an interdisciplinary team of specialists who, together, provide comprehensive care throughout the course of their disease. From our MS Clinic to our weekly lectures and support groups, we help MS patients manage their unique symptoms and needs.

Visit link:
Neuroscience Care at OhioHealth | Columbus Neurology and ...

Neuroscience – RIT

Co-op/Internships and Summer Research Opportunities for 2017 in Neuroscience

Organizations that have updated for 2016 or offer opportunities on an annual basis will have (2016)

All opportunities listed are PAID, unless otherwise indicated

Some links will require the Adobe Acrobat Reader to read pdf format. If you don't have a copy on your computer, click here for a free download All co-ops/internships listed are PAID, unless otherwise indicated Skip the introduction and Go to Co-op/Internship Postings Return to Special Interest Group Co-op/Internship List

Originally posted here:
Neuroscience - RIT

What is Neuroscience ? – All Psychology Careers

Rapid advances in technology combined with knowledge about how the brain and nervous system work have ushered in progress once considered purely science fiction, but today falling under a growing area of scientific study called neuroscience.

Take, for example, the case of implanting a sensor into a paralyzed individuals brain. The sensor detects thoughts that the individual has about moving an arm. These thoughts are then sent to a plug on the individuals scalp, which sends signals to a computer that translates the signals into motor movements.

Or consider the practice of placing electrodes under a persons scalp, electrodes connected to a battery-operated generator implanted under the skin near the individuals collarbone. The result? An intervention for a brain-related disorder called essential tremor.

Both of these cutting-edge medical interventions wouldnt have been possible without the field of Neuroscience, an area of specialty that wasnt formalized into its own field until 1971. Since then, the amount of investigation and research completed by those working in the field has grown faster than most other scientific areas of thought and empirical study.

And those individuals with devastating brain and spinal cord injuries, brain diseases and disorders, are the main beneficiaries of these once unimaginable scientific advancements.

The Society for Neuroscience (SfN) defines neurosicence as the study of the nervous system, including the brain, spinal cord, and networks of sensory nerve cells called neurons. It is an interdisciplinary field, meaning that it integrates several disciplines, including psychology, biology, chemistry, and physics.

In studying the nervous system, the field adds to a body of knowledge about human thought, emotion, and behavior the main area of expertise for those working in psychology, especially the field of Neuropsychology.

Both neuropsychologists and neuroscientists focus their research on the understanding of brain disorders, injuries, and deficits. For this reason, these scientists must have a solid understanding of how psychological processes relate to the brains structures and systems, or on the interrelated and inseparable connections between cognition and brain physiology.

To help those with brain disorders, neuroscientists first must understand normal brain functioning. Therefore, many neuroscientific investigations into abnormal brain functioning complement the science of normal brain functioning.

Neuroscientists study a wide range of topics related to the brain and nervous system. Most specialize, however, on a particular disability or problem associated with one brain region or area. The implanting of brain sensors is one example of specialized neuroscientific research.

In an August 2010 interview with The New York Times, John Donohue detailed how his research into combining brain signals with computers resulted in BrainGate, the invention responsible for returning some voluntary movements to paralyzed individuals. He has focused on using BrainGate to help those who have had strokes, incurred spinal cord injuries, or suffer with amyotrophic lateral sclerosis (ALS).

Donoghue, a professor of engineering and neuroscience at Brown University, told reporter Claudia Dreifus, in the article Connecting Brains to the Outside World, that when he entered graduate school in 1976, his desire was to learn how the brain works. But, he realized that that question was too broad, and he needed to break it down into a more easily studied sub-topic, which became how does the cerebral cortex allow thoughts to become action?

In the 1980s, he and colleagues from his laboratory worked on technologies that permitted them to distinguish where brain activity occurred when the body moved, such as when arms or legs moved. These technologies led to the invention of the brain sensor.

In 2004, Donoghue and other researchers implanted the sensor into an individual that had a spinal cord injury that left him paralyzed. When they turned on BrainGate the sensor attached to a scalp plug thats attached to a computer they could see activity in his brain light up when he thought about moving his left or right hand. In other words, even though his body couldnt produce the movement, his brain still processed the command.

In the NYT article, Donohue related how up until that point, many assumed that brain function was reduced or nonexistent after a debilitating spinal cord injury. But this new technology pointed out that it was the connection between the brain and the desired movement that was injured, not the brain itself. In other words, theres a break or disconnect between the brain the other parts of the nervous system.

This has profound implications not for only BrainGate, but for anyone thinking about nervous system injuries, Donohue told the NYT.

Ultimately, Donoghue said, at the goal of BrainGate is to return lives impacted by neurological injuries back to a state of normalcy, or as close as possible to the productive lives they had before the injuries or illnesses.

Neuroscientists at the Mayo Clinic also want individuals suffering with brain and neurological disorders to regain normal functioning and their livelihoods. In its quarterly publication, Sharing Mayo Clinic, Mayo describes how its research into deep brain stimulation (DBS) led to some of the first applications of this technology in the United States.

In one particular case, world-renowned violinist Roger Frisch, associate concertmaster of the Minnesota Orchestra, thought his music career would be over after being diagnosed with a condition known as essential tremor.

A progressive neurological disorder, essential tremor results in tremors during certain movements, such as eating or writing. Tremors can also occur in the head, neck, jaw, and voice.

In Frischs case, the tremors occurred in his arms while performing. Kendall Lee, M.D., Ph.D., and specialist in DBS at Mayo Clinic, believed that locating the tremors source, or area of Frischs brain where the tremors materialized, could help alleviate them.

In order to accomplish this localization, Mayos surgical team had Frisch perform in the surgical suite where a device engineered by Mayos researchers measured the exact movement of Frischs hand, tracing and mapping the movement to the area of the activated brain.

The newsletter called the device an accelerometer, a small semiconductor device that measures movement in three dimensions. It was attached to a violin bow and connected to an amplifier and radio system.

The device transmitted data to a computer monitor where the research team saw the genesis and progress of the tremor as the bow moved across the strings. Electrodes were placed on Frischs skull where the researchers located the misfiring brain signals, and the tremors stopped.

Frisch then went into surgery so that the wires could be placed under the scalp and connected to a battery-operated pulse generator that sends constant electrical pulses to the brain. The generator is implanted under the skin by the collarbone.

If you are interested in the fields of Neuropsychology and Neuroscience, in research and medical facilities designed to treat individuals suffering from brain injuries and dysfunctions, contact schools offering degrees in psychology. One career path for neuroscience professionals is to major in neuropsychology and take additional coursework in biology, physiology, anatomy, chemistry, and other sciences. A Ph.D. is required to work in most areas of neuroscience.

Diagnosing traumatic brain injury (TBI) remains a tedious and often difficult process for many healthcare professionals, especially in cases of mild or moderate TBI. As a result, some individuals dont receive treatment or intervention for possible neurological deficits.

Banyan Biomarkers, a Florida-based privately held company wants to solve that problem.

Founded by two neuroscientists, Banyans researchers are trying to identify biomarkers in blood tests that accurately predict head injury. Research by Banyans scientists and published in the journal Critical Care Medicine, stated that a 66-patient study of individuals with severe brain injury had elevated levels of UCH-LI 16 times the level of those without a head injury.

Banyans scientists also stated in another article for the European Journal of Neuroscience that laboratory studies with rats showed blood tests with increased levels of UCH-LI for those with brain injury and stroke.

Battlefield explosions and sports injuries often leave individuals dazed but seemingly fine, performing some neurological tests adequately, but actually needing medical treatment, rest and recovery.

According to the International Brain Injury Association, the Glasgow Coma Scale (GCS) is currently used to divide individuals into mild, moderate, and severe injury. This is a symptom-based neurological test, checking vital signs, heart rate, blood pressure, and the patients thinking in terms of memory and consciousness.

A blood test showing a definitive marker for brain injury would significantly increase an accurate diagnosis for those with mild and moderate head injuries.

Of the mild TBI patients 40-50% suffer persistent neurological problems from one to three months following injury, and 25% after one year, according to the International Brain Injury Association website.

Even severe cases of brain injury can be hard to recognize. In 2009, actress Natasha Richardson died from a skiing accident that injured her head. Assuring her family that she was fine, she did not receive medical treatment as quickly as her injury required.

Read more:
What is Neuroscience ? - All Psychology Careers

Home | Institute of Neuroscience

Institute of Neuroscience

The Institute of Neuroscience (ION) is a group of biologists, psychologists, and human physiologists at theUniversity of Oregon that has pooled its expertise to tackle fundamental questions in neuroscience questions such as, "How do neural stem cells choose between self-renewal and differentiation?" "What mechanisms generate the large diversity of neurons within the brain?" "How do these neurons 'wire up' into functional circuits?" "How do neural circuits produce behavior?"

These questions are being explored at all levels of organization from the relatively simple nervous systems of Drosophila, C. elegans, and zebrafish to the more complex networks in mice, owls, and humans.

ION boasts a highly collaborativefacultywith expertise in genetics, development, electrophysiology, optogenetics, and functional MRI. As a result, students enrolled in ourPhD programcome away with the broad conceptual and technical skills necessary to run an independent neuroscience research lab or pursue many other related career paths. Our state-of-the-artfacilitiesand excellent support staff allow ION members to progress rapidly by making exploratory or pilot experiments accessible.

MEET OUR CO-DIRECTORS

Read the rest here:
Home | Institute of Neuroscience