Category Archives: Neuroscience

Neuroscience Antibody or Research Reagents Market Size And Forecast (2020-2026)| With Post Impact Of Covid-19 By Top Leading Players- NEOBIOSCIENCE,…

COVID-19 Impact on Global Neuroscience Antibody or Research Reagents Market Professional Survey Research Report 2020-2027

Overview Paragraph

Starting with the basic information, the report provides a complete summary of the global Neuroscience Antibody or Research Reagents market. The summary discusses the outlook and specifications of products and services in the market and their application. The report also provides detailed information on the technology used for manufacturing and production. The report provides information on the production procedures that can increase productivity and efficiency of the overall system. The report classifies the global Neuroscience Antibody or Research Reagents market into segments based on knowledge of the market. The report covers the key market players present in different regions and also studies the strategies used by them to enhance their presence and value in the Neuroscience Antibody or Research Reagents market. The report predicts future trends and scope of the market for the forecast period 2020-2027.

Key Players

NEOBIOSCIENCE, Genscript, Thermo Fisher Scientific, Wuhan Fine Biotech Co., and Ltd.

Get sample copy of this report: https://www.reportsandmarkets.com/sample-request/global-neuroscience-antibody-or-research-reagents-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread?utm_source=icotodaymagazine&utm_medium=15

Market Dynamics

The report covers various factors that are responsible for the rapid growth and expansion of the Neuroscience Antibody or Research Reagents market. The report provides information on the dynamic nature of the market, analyzes the pricing economic models, dynamics of demand and supply, market driving forces, market growth restraints, etc. The report covers factors such as the favourable government initiatives and policies, mounting population, geographical changes, etc changes can impact the stability of the market during the forecast period. The report assesses the internal and external factors that can cause abnormalities in the market. The report also focuses on the opportunities, challenges, and threats witnessed by the market participants present in the Neuroscience Antibody or Research Reagents market.

Segmental Analysis

The report divides the global Neuroscience Antibody or Research Reagents market into some key segments based on attributes, features, applications, and types. This information would help the new market entrants and emerging players to understand the overall structure of the market and get information on the various products and services available in the market. This information would also help the market entrants to understand the emerging trends that can dominate the market in the future. The Neuroscience Antibody or Research Reagents port includes detailed information on the critical market segments that can lead or drive the overall Neuroscience Antibody or Research Reagents market during the forecast period. The report also covers the regional segments of the Neuroscience Antibody or Research Reagents market. The major regional markets that are expected to drive the product demand in the future are also mentioned in the market report.

Regional Analysis for Neuroscience Antibody or Research Reagents Market

North America (the United States, Canada, and Mexico)

Europe (Germany, France, UK, Russia, and Italy)

Asia-Pacific (China, Japan, Korea, India, and Southeast Asia)

South America (Brazil, Argentina, Colombia, etc.)

The Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

The objectives of the report are:

To analyze and forecast the market size of Neuroscience Antibody or Research Reagents Industry in the global market.

To study the global key players, SWOT analysis, value and global market share for leading players.

To determine, explain and forecast the market different attributes of the products or services. This information would help the companies to understand the prominent trends that are emerging in the market and would also provide a wider by type, end use, and region.

To analyze the market potential and advantage, opportunity and challenge, restraints and risks of global key regions.

To find out significant trends and factors driving or restraining the market growth.

To analyze the opportunities in the market for stakeholders by identifying the high growth segments.

To critically analyze each submarket in terms of individual growth trend and their contribution to the market.

To understand competitive developments such as agreements, expansions, new product launches, and possessions in the market.

To strategically outline the key players and comprehensively analyze their growth strategies.

View Full Report @ https://www.reportsandmarkets.com/reports/global-neuroscience-antibody-or-research-reagents-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread?utm_source=icotodaymagazine&utm_medium=15

Key questions answered in the report:

What is the growth potential of the Neuroscience Antibody or Research Reagents market?

Which product segment will grab a lions sh are?

Which regional market will emerge as a frontrunner in the coming years?

Which application segment will grow at a robust rate?

What are the growth opportunities that may emerge in the Neuroscience Antibody or Research Reagents industry in the years to come?

What are the key challenges that the global Neuroscience Antibody or Research Reagents market may face in the future?

Which are the leading companies in the global Neuroscience Antibody or Research Reagents market?

Which are the key trends positively impacting the market growth?

Which are the growth strategies considered by the players to sustain hold in the global Neuroscience Antibody or Research Reagents market

List of Tables and Figures

About Us:

Reports And Markets is part of the Algoro Research Consultants Pvt. Ltd. and offers premium progressive statistical surveying, market research reports, analysis & forecast data for industries and governments around the globe. Are you mastering your market? Do you know what the market potential is for your product, who the market players are and what the growth forecast is? We offer standard global, regional or country specific market research studies for almost every market you can imagine.

Contact Us:

Sanjay Jain

Manager Partner Relations & International Marketing

http://www.reportsandmarkets.com

Ph: +1-352-353-0818 (US)

Read more from the original source:
Neuroscience Antibody or Research Reagents Market Size And Forecast (2020-2026)| With Post Impact Of Covid-19 By Top Leading Players- NEOBIOSCIENCE,...

Pattern separation may not be present in the human hippocampus – News-Medical.Net

Nov 9 2020

NEUROSCIENCE EXPERTS from the University of Leicester have released research that breaks with the past fifty years of neuroscientific opinion, arguing that the way we store memories is key to making human intelligence superior to that of animals.

It has previously been thought and copiously published that it is pattern separation in the hippocampus, an area of the brain critical for memory, that enables memories to be stored by separate groups of neurons, so that memories dont get mixed up.

Now, after fifteen years of research, Leicester Universitys Director of Systems Neuroscience believes that in fact the opposite to pattern separation is present in the human hippocampus. He argues that, contrary to what has been described in animals, the same group of neurons store all memories. The consequences of this are far reaching, as such neuronal representation, devoid of specific contextual details, explains the abstract thinking that characterizes human intelligence.

In contrast to what everybody expects, when recording the activity of individual neurons we have found that there is an alternative model to pattern separation storing our memories. Pattern separation is a basic principle of neuronal coding that precludes memory interference in the hippocampus. Its existence is supported by numerous theoretical, computational and experimental findings in different animal species but these findings have never been directly replicated in humans. Previous human studies have been mostly obtained using Functional Magnetic Resource Imagining (fMRI), which doesnt allow recording the activity of individual neurons. Shockingly, when we directly recorded the activity of individual neurons, we found something completely different to what has been described in other animals. This could well be a cornerstone of humans intelligence.

Professor Rodrigo Quian Quiroga, Director of Systems Neuroscience, Leicester University

The study, No pattern separation in the human hippocampus, argues that the lack of pattern separation in memory coding is a key difference compared to other species, which has profound implications that could explain cognitive abilities uniquely developed in humans, such as our power of generalization and of creative thought.

Professor Quian Quiroga believes we should go beyond behavioral comparisons between humans and animals and seek for more mechanistic insights, asking what in our brain gives rise to humans unique and vast repertoire of cognitive functions. In particular, he argues that brain size or number of neurons cannot solely explain the difference, since there is, for example, a comparable number and type of neurons in the chimp and the human brain, and both species have more or less the same anatomical structures. Therefore, our neurons, or at least some of them, must be doing something completely different, and one such difference is given by how they store our memories.

The study No pattern separation in the human hippocampus by Rodrigo Quian Quiroga is published in the journal Trends in Cognitive Sciences.

Source:

Journal reference:

Quiroga, R.Q. (2020) No Pattern Separation in the Human Hippocampus. Trends in Cognitive Sciences. doi.org/10.1016/j.tics.2020.09.012.

Original post:
Pattern separation may not be present in the human hippocampus - News-Medical.Net

Study focuses on efficacy of cognitive rehabilitation across a range of neurological conditions – News-Medical.Net

Reviewed by Emily Henderson, B.Sc.Nov 11 2020

A new text by Kessler Foundation scientists focuses on the efficacy of cognitive rehabilitation across a variety of neurological conditions, with specific emphasis on treatment-related changes in the brain detectable via neuroimaging.

"Cognitive Rehabilitation and Neuroimaging: Examining the Evidence from Brain to Behavior," (DOI:10.1007/978-3-030-48382-1) is authored by John DeLuca, PhD, Senior Vice President of Research and Training, Nancy Chiaravalloti, PhD, director of the Centers for Neuropsychology, Neuroscience, and Traumatic Brain Injury Research, and Erica Weber, PhD, research scientist in the Center for Traumatic Brain Injury Research.

The authors conduct cognitive rehabilitation research at Kessler Foundation, home to the Rocco Ortenzio Neuroimaging Center, a research-dedicated facility, and collaborate with researchers in the U.S. and the international community.

Because the nature of cognitive impairment and rehabilitative interventions differ across populations, content is divided by neurological condition, with experts addressing aging, stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, and multiple sclerosis (MS).

The use of neuroimaging in cognitive rehabilitation trials is covered, as well as the need to design trials to establish Class I evidence for new treatments.

Neuroimaging has advanced cognitive rehabilitation by enabling us to examine brain processes and correlate them with alterations in behavior and anatomical structures. Using specialized techniques such as structural and functional magnetic resonance imaging, diffusion-weighted imaging, and electroencephalography, we are documenting how cognitive interventions effect changes in neural activation and connectivity that correlate with improvements in language, memory, attention, and motor function.

Through advancements in neuroimaging analysis, we are learning more about the neuroplasticity of the brain in MS and schizophrenia, which will challenge researchers to apply these approaches to populations where more investigation is needed, such as children with brain injuries and individuals with brain tumors."

John DeLuca, PhD, Senior Vice President of Research and Training, Kessler Foundation

Source:

Journal reference:

DeLuca, J., et al. (2020) Cognitive Rehabilitation and Neuroimaging. Springer. doi.org/10.1007/978-3-030-48382-1.

More:
Study focuses on efficacy of cognitive rehabilitation across a range of neurological conditions - News-Medical.Net

What is Computation’s Role in Neuroscience? – Stanford University News

In this Directors Conversation, HAI Denning Co-Director Fei-Fei Lis guest is William Newsome, the Harman Family Provostial Professor of Neurobiology at the Stanford University School of Medicine and the Vincent V.C. Woo Director of the Wu Tsai Neurosciences Institute.

Here Li and Newsome discuss the role of computation in neuroscience, the challenges computational neuroscientists can address, whether understanding the brain at a molecular level can lead to better neural networks, AIs motivation spectrum, and the complicated definition of consciousness when it comes to both natural intelligence and artificial.

Full transcript:

Fei-Fei Li: Welcome to HAIs Directors Conversations, where we discuss advances in AI with leaders in the field and around the world. Today with me is Professor Bill Newsome. Im very, very excited to have this conversation with Bill. We have been having conversations throughout our career, and Ive been such a great admirer of Bills scholarship and leadership. Hes the Professor of Neurobiology at Stanford School of Medicine and the Director of the Wu Tsai Neurosciences Institute at Stanford. Bill has made significant contributions to understanding of neural mechanisms underlying visual perception and simple forms of decision-making. As head of Wu Tsai Institute, hes focused on multidisciplinary research that helps us understand the brain, and provide new treatments for brain disorders, and promote brain health.

So welcome, Bill. Im very much looking forward to this conversation.

Bill Newsome: Great to be here, Fei-Fei. Nice to see you again.

Li: Lets start with just defining and talking about the intersection of AI and neuroscience. What do you see as the role of computation in your field, and Wu Tsai Institutes work?

Newsome: Well, thats a great question. Computation is extremely important in the field of neuroscience today. There are two or three different ways I could answer that question, but let me try this one on you. We actually have a subfield called computational neuroscience. Weve hired faculty in this area here at Stanford, and we hope to hire more. People sometimes ask me, What is that? And I would put it this way. Computation in neuroscience has about three different areas that are really, really important. The first area is theorists: its people who actually try to theorize and extract general principles about how the brain is computing, how the brain is representing, how the brain produces action.

The second area I would call neural network kinds of people: modelers, people who really understand how to do deep convolutional networks and understand how to do recurrent neural networks, and actually model simple toy problems that we know the nervous system solves. If we can figure out how these networks solve these problems, then we can get some insight maybe into new hypotheses about the nervous system.

And then a third way that computation is really influencing neuroscience is through high-end data analytics. Like many areas of science, we are getting larger, richer, more sophisticated, and sometimes much more obscure datasets now out of the brain than weve ever been able to get in human history. And to actually understand how to deal with those data, how to treat them, how to avoid statistical pitfalls is extremely important.

I think all three of those areas of computation are really important for neuroscience. I think different computational neuroscientists may excel in two, or occasionally even all three of those, but we need more people like this in neuroscience today, not fewer, because the challenges are greater than theyve ever been.

Li: What are the biggest challenges that you feel are in need of this kind of computational neuroscientist?

Newsome: Well, let me give you some real-world examples; maybe give you one where computation has actually played a leading role and other approaches to neuroscience are lagging behind, and one where computation needs to step in and create a role in order to create understanding.

So one area that I would give to you is something in the nervous system called integration, and its familiar to anyone whos taken calculus. Its literally counting up events that happen, literally integrating some time series and saying how much you have at the end. This turns out to be a really important problem in the nervous system in many areas, including decision making, but a very simple one. Its just moving your eyes. So we know when you move your eyes from this point to this point, certain neurons give a little burst in a map of eye movement space in the brain, and when they get the burst, the eyes go out there. The amazing thing is they stay there after they get there, even though the burst is gone.

And the theorizing, the theory of computation is about integration: How could you take neural signals of the burst, integrate some value that holds the eyes in position until an animal is ready to move the eyes again? We knew some things about the physiology, we knew some things about the computation, we knew some things about the connectivity of brain structures that produce eye movements. What we really lacked was actually anatomy, in this case.

It turned out that several different computational theories that embodied physical principles could account for this, but to know which one is actually working in the brain, we needed the microanatomy of how cells are really hooked up to each other. Thats an example where computational theory actually led the way and motivated some anatomical questions.

But one that many listeners to this will resonate with today is the example of deep convolutional networks that are approaching human performance in visual categor-

Li: Surpassing in some cases.

Newsome: Surpassing in some cases, absolutely. Peoples jobs are insecure here because these networks are getting so good at visual categorization. And this presents a really interesting problem, because youre going to train a deep convolutional network that can do these things that seem almost magical, and we know almost everything there is to know about them, right? We know exactly the connections between the layers of the trained network, we know the signals that are passing, we can see the dynamics that exist, we can measure their performance. But there is still this deep angst, an intellectual angst, Id say, among neuroscientists, and I think among some people in the AI community, that we still dont understand how thats happened.

What are the algorithmic principles by which you take an array of pixels and you turn it into faces, and distinguish among faces? And somehow, the deep physical and computational principles are not there yet. We dont understand how these things are working. We understand the learning algorithm, and maybe thats as deep as itll get at some point. But heres a situation where I think computation needs to step in and teach us this, both for the artificial networks, and then for the real networks in our brains that recognize faces.

Li: Bill, I want to elaborate on that because neural networks, especially in visual recognition, are dear and near to my heart. On the one hand its phenomenal, right? We have these hundreds-layered, sometimes even thousand-layered convolutional neural network or recurrent network algorithms that are just very complex and can perform phenomenally well. When it comes to object recognition, some of these networks do surpass human capability. But in the meantime, if you look inside under the hood of these algorithms, while theyre humongous, theyre also extremely contrived compared to the brain.

Ill just take one example of the neuron-to-neuron communication. The way that its realized in todays neural network algorithm is a single scalar value, whereas the synaptic communication in the brain, as we learn more, and your colleagues will tell us, is far more complex. The neural signaling is not just one kind of neural signaling. I would love to hear more about this.

Also, on a little more system level, our brain is this organic organ that has evolved for at least the past 500 million years; the mammalian brain is about 100 million years, and it has different parts, and different modules, and all that. And todays neural network is nowhere near that kind of complexity and architecture.

So on one hand these humongous deep learning models are doing phenomenally well. On the other hand, theyre also very contrived compared to the brain. And Im just very intrigued: from your perspective, as we learn more about these computational realities of the brain at the molecular level, at the synaptic level and the system level, do you see that were going to have different insights how to build these neural networks?

Newsome: I hope so, Fei-Fei. I think this is one of the deepest intellectual questions that computationally-minded neuroscientists argue about, and thats to what extent are AI, and what I call NI natural intelligence going to converge at some point and really be useful dialogue partners? And to what extent are they simply going to be ships passing in the night, or theyre going to be parallel universes? Because there are these dramatic differences, as you point out.

One individual neuron and our brain contains about 100 billion of them is incredibly complex: incredibly complex shapes and incredibly complex biophysics, and different types of neurons in our brain have different types of physics. Theyre profoundly non-linear, and they are hooked together in these synapses and ways that form circuits, and understanding and mapping those circuits is a big fundamental problem in neuroscience.

But something that should give all of us great pause is that there are these substances that are released locally in the brain called neuromodulator substances, and they actually diffuse to thousands of synapses in the space around them in the brain, and they can completely change that circuitry. This is beautiful, beautiful work by Eve Marder, who spent her career studying this neuromodulation. You take one group of neurons that are hooked up in a particular way, spritz on this neuromodulator, and suddenly theyre a different circuit, literally.

Li: Yeah, thats fascinating. We dont have that computational mechanism at all in our deep learning architecture.

Newsome: And another feature of brain architecture, that you and I have talked about offline together, is that brain architecture is almost universally recurrent. So area A of the brain has a projection to area B. You can kind of imagine that as one layer in the deep convolutional network to another layer. But inevitably, B projects back to A. And you cant understand the activity of either area without understanding both, and the non-linear actions, the dynamical interactions that occur to produce a state that involves multiple layers simultaneously.

Many of us think today that understanding those dynamical states that are distributed across networks are going to be the secret to understanding a lot of brain computation.

I know that recurrence is starting to be built into some of these DCNs now. I dont know where exactly that field sits, but that certainly is one of the ways you get dynamics.

Dynamics are, again, another universal feature of brain operation. They reflect the dynamics in the world around them, and the input but also the dynamics in the output. Youve got to have dynamical output in order to drive muscles to move arms from one place to the other, right? So the brain is much richer, in terms of dynamics.

Another thing about the brain is it operates on impressively low power.

Li: I know, I was going to say the 20-watt problem. Thats dimmer than any lightbulbs we have. We hear about these impressive neural networks like GPT-3 or a neural architecture search or burst, an image that algorithms are all burning GPUs much more massively.

So how do you think about that?

Newsome: Well, I dont think about it very much, except that our contrived devices are very, very inefficient and very wasteful.

We have a colleague at Stanford, Kwabena Boahen, who studies neuromorphic engineering, and trying to build analog circuits that compute in a much more brain-like way. And his analog circuits certainly are much, much more efficient in power usage than digital computers. But they havent achieved nearly the level of impressive performance and the kinds of sort of cognitive-like tasks that DCNs have achieved so far. So theres a gap here that needs to be crossed.

Li: Yeah, I think this is a very interesting area of research. You mentioned the word cognitive, and I want to elaborate on that because I know we started talking about computational neuroscience, but cognitive neuroscience is part of neuroscience, and also in the field of visual where I sit.

First of all, half of my PhD was cognitive neuroscience. Second of all, in the past 30 years, I would give cognitive neuroscience a lot of credit in the field of vision to show to the AI world what are the problems to work on, especially the phenomenal work coming from the 70s and 80s in psychophysics by people like Irv Biederman, Molly Potter, and then getting to neurophysiology and cognitive neurophysiology, like Nancy Kanwisher, Simon Thorpe, showing us the phenomenal problem of object recognition, which eventually led to the blossom of computer vision object recognition research in the late 90s and the first 10 years of the 21st century.

So I want to hear from you, do you still see a role of cognitive neuroscience in, I guess, two sides of this: one is in todays AI, which I think I have an opinion, but also AI coming back to help?

Newsome: I am not nearly as well versed or trained in cognitive neuroscience as you were. That was your graduate training. I think in a very simple-minded way about cognitive neuroscience, that may make our colleagues, may make you shudder, Fei-Fei, Im not sure. I was trained as a sensory neuroscientist, trained in the visual system, the fundamentals of Hubel and Wiesel, and the receptive-field properties in the retina. And then the first processing in the brain, and then the cortex.

I was sort of getting into the brain, back in the 1970s and 1980s, thinking about signals coming from the periphery. We all called ourselves sensory neuroscientists, but there was another whole group of neuroscientists who were coming the opposite direction. They were having animals make movements: a right eye movement, like weve already talked about, or arm movements, and theyre looking at the neurons that provide input to those movements, and then theyre tracing their inputs back into the brain. And this was a motor science kind of effort.

And the sensory side and the motor side has enjoyed listening to each other talk, but they didnt really talk about it very much. But they had to meet eventually. And I think one part of my career was playing a part in hooking those two things up. And we did it by studying simple forms of decision making. So giving animals sensory stimuli that was my comfort zone asking animals to make a decision about what they were seeing, and then make an operant movement. And if they got it correct, they got a reward.

Well, how did the sensory signals that are the result of a decision get hooked up to steering the movement? And that there, youre squarely in cognition land. Some people refer to that as the watershed between sensory systems in the brain and motor systems in the brain. How do you render decisions?

You can think about sensory representations in the brain as kind of being like evidence, providing evidence about whats out there in the world. But then you can think about these cognitive structures in the brain that have to actually make a decision, render a decision, and instruct movements. You cant move your eyes to the right and to the left at the same time. Not going to happen. Sometimes you simply have to make decisions.

Thats how I kind of got into the cognitive neuroscience. And I think its one of the most interesting fields in all of neuroscience right now. I am hoping that AI and computational theory ... well, I know that computational theory is making contributions because some of the integration problems, integration of evidence from noisy stimuli, those kinds of theories, those kinds of theoretical models have deeply informed my own work in decision making. So computation theory are certainly making contributions.

I sometimes wonder about the other way around: What is that we are learning from vision and neuroscience that could inform AI? And you and I have had conversations about that as well.

Li: Right. So Ill give you an example of a group of us, Stanford neuroscience people like Dan Yamins, Nick Haber, they are the young generation of researchers who are actually taking developmental cognitive inspiration into the computational modeling of deep learning framework. They are building these learning agents that you can think of as learning babies as a metaphor, where the AI agent is trying to follow the rules of the cognitive development of early humans, in terms of curiosity, exploration and so on, and learn to build a model of the world and also improve its own dynamic model of how to interact with this world.

I think the arrow coming from cognitive developmental science actually is coming to AI to inspire new computational algorithm that transcends the more traditional, say, supervised deep learning models.

Newsome: One example where neuroscience has really led the way for artificial intelligence and for convolutional networks and artificial vision is the deep understanding of the early steps of vision in the mammalian brain, where set field structures filtering for spatial and temporal frequencies have particular locations in space; the multiscale nature of that; assembling those units in ways that extract oriented Gabor filters. Thats typical of the oriented filter, typical in the early stages of cortex processing in all mammals. And that now is baked into artificial visual.

That was the first thing. You dont even bother to train a DCN on those steps. You just start with that front end, and that front end came honestly from neuroscience, from the classic work of Hubel and Wiesel, as you know. Coming through some principle psychophysics and statistical analysis input from people like David Field. I think if I had to point to one thing that neuroscience has given to AI it would be the front end of a lot of the vision.

Li: Thats a really big thing, so absolutely.

Newsome: Fei-Fei, let me just say that the other challenges there and I think yeomans of the young generation who are working on visual would acknowledge, I think everyone acknowledges this, really is that the artificial visual systems even though they can surpass human performance in some cases after theyre trained, the learning process is so different for humans from the artificial systems.

The artificial systems need tens of thousands of examples to get really, really good, and they have to be labeled examples, and they have to be labeled by human beings, or what is your gold standard. Whereas I have this little 5-year-old daughter at home, and by the time she was two or three, she had looked at a dozen examples of elephants, and she could recognize elephants anywhere. She could recognize line drawings, photographs, different angles, different sizes, different environments. And she can play Wheres Waldo on the common childrens magazine. And this is profoundly different.

So heres an example where human cognitive neuroscience and the study of visual development in young humans and young animals, I think, presents a real challenge for artificial vision, artificial intelligence.

Li: Yeah, I actually wanted to emphasize on a point you just made because it truly, using your word, is profound because the way humans learn biologically, your NI, natural intelligence system learn is so different. I still remember 20 years ago, my first paper in AI was called One-Shot Learning of Object Categories, but until today, we do not have a truly effective framework to do one-shot learning the way that humans can do, or few-shot learning. And beyond just training example-based learning, there is unsupervised learning, there is the flexibility and the capability to generalize, and this is really quite a frontier of just the overall field of intelligence, whether its human intelligence, or artificial intelligence.

Newsome: Yeah, I think both AI and NI have to be appropriately humble right now about this. Were almost equally ignorant about exactly how that happens.

Li: In a way, I almost think it has a social impact for those of us who are scientists. We need to share with the public about the limitations because the hype talk of AI today, of machine overlord and all that, is built upon some of the lack of knowledge of the limitations of the AI system, and also the phenomenal capability of human intelligence to stumble.

Bill, I want to switch topic a little bit because I think what you are doing at Wu Tsai goes beyond some of these more lower level modeling. One of the most important charter mission of Wu Tsai is neuro disorder and healthcare-related. Here, Im going to say something that I hope that you can even disagree on: should we view AI and machine learning more like a tool for our researchers and doctors, clinicians to use this modern tool of data-driven methodology to help discover mechanism of diseases and treatments? Are there any examples of work at Wu Tsai like that? Just in general, how do you view AI through that lens of studying neuro disorders?

Newsome: Yeah, thats a really good question. Is AI really more of a tool to enable us to get on with the business of doing serious biology, or do the actual processes and algorithms and architectural structure of AI lend understanding to their correspondence inside the brain?

And I think the answer is both. So let me just give you a little Bills-eye-view of neuro disease. There are some neurological diseases that have psychiatric comorbidities, where the biggest problem is simply that cells in the nervous system, somewhere in the nervous system, start dying, for reasons we dont know yet. Parkinsons disease is an example, where its a particular class of cells, the dopamine arginic cells that start dying, and we dont know why. And Alzheimers disease, cells start dying all over the brain. Theres some areas that are particularly sensitive but by the time an Alzheimers patient shows up in the clinic complaining of symptoms, theyve already lost probably billions of nerve cells; certainly hundreds of millions of nerve cells by the time they become symptomatic.

And those diseases, I think, are going to be solved ultimately at a molecular and cellular level. Something is going wrong in the life of cells, and whether thats in the metabolic regime, whether its in the cleanup regime, keeping the cell whole and safe and free of pollutants, whatever it is, the secrets to that are going to be in cell biology, and AI can certainly help us tremendously just by providing tools to assemble all the data that were acquiring at that genetic and molecular level inside of cells.

On the other hand, there are neural diseases that smack of the more systems type of pathology; the problems are not lying in single cells probably. So you take some of the symptoms of Parkinsons disease, for example, the tremor and things like this, they can actually be rectified by putting stimulating electrodes inside the brain and doing a process called deep brain stimulation. Any of the listeners who arent familiar with this can just Google deep brain stimulation, or go to YouTube, and you can see amazing videos of remission of symptoms with this. Not a cure for Parkinsons but its a treatment for the symptoms.

And there are things like depression, which themselves dont kill people; its not like its a progressive degenerative disease. In depression, people come in, they come out. Its a dynamic kind of process. It smacks of the state system inside the brain, and that state can go through multiple systems, some of which are depressed, some of which we would characterize as more normal or positive kind of outlook.

And that kind of dynamics of complex systems, I think, is going to be part and parcel of the AI computational neuroscience thrust: understanding how these densely interconnected networks, based on certain inputs, can assume different states, fluctuate between them. I think could give some insight into the actual disease itself.

So I think it depends on which disease youre talking about, on whether AI is primarily going to be a tool or whether it might actually suggest some intellectual insights into the sources and explanations for some of them.

Li: That speaks of the broadness of machine learning AIs utility in this big area. Where we sit at HAI, we see already a lot of budding collaborations between the school of Medicine, Wu Tsai Institute, and HAI researchers, where all of these topics are touched. I know theres reinforcement learning algorithms in neurostimulation for trauma patients. Or there is computer vision algorithms to help neuro-recovery, in terms of physical rehabilitation. And also all the way down to the drug discovery, or those areas. So very excited to see this is also a budding area of collaboration between AI and neuroscience.

Newsome: I think that this is going to grow, that interface is going to grow. I think ultimately well diagnose depression much better through rapid real-time analysis of language that people use, and adjectives that they use, than expensive interaction with physicians. I dont think the algorithms are going to replace physicians, but theyll be very useful.

Can I bug you about something Im wondering about?

Li: Sure.

Newsome: In some of the first discussions that led up to the formation of AI that I was privileged to sit in upon, we raised a question of when youre a biologist you think about a human or animal performing a task; doing a discrimination task, or making a choice between this action that action. And the question that comes up is motivation. What is the organism motivated to do at the time?

And this gets very complicated. In all kinds of social situations with humans, we worry about whats fair, and we may do things that are against our economic interest because we are striking out for fairness. There are these values, there are these motivations, there are these incentives. And I wonder: what is the motivation in an artificial agent? To the extent that I know anything about motivation in artificial agents, its minimizing some cost function. Is that all there is to understand about incentives and motivation?

Is that all these complex feelings that we have, are they just reduced to cost functions, or is there a whole world there that AI needs to discover that they havent even scratched the surface of yet?

Li: This is a beautiful question. When you talk about motivation, I was thinking: what kind of reward objective mathematical functions I can write? And I come up very simple ones, like in the game of Go, I maximize the area that my own color block occupy. Or in the self-driving car, I will have a bunch of quantifiable objectives, that is: stay in the lane, dont hit an obstacle, go with the speed, and so on. So yes, the short answer is motivation is a loaded word for humans, but when it comes to todays AI algorithm, they are reduced to mathematical reward functions, sometimes as simple as a number, or what we call scalar functions. Or a little more complex, a bunch of numbers, and so on. And thats the extent.

This clearly creates an issue with communication with the public because on one hand, people are claiming incredible performances of vision language, especially those confusing language applications where you feel the agent actually is talking to you, but the under the hood its just an agent optimizing for similar pattern it has seen.

So we dont have a deep answer to this at all. My question to flip this is: both as a neuroscientist, as well as more objective observer of AI, do you see this as a fundamentally insurmountable gap, hiatus, between artificial intelligence and natural intelligence that would potentially touch on philosophical issues like awareness, consciousness? Or do you think this is a continuum of computation? At some point when computation is more and more sophisticated, things like motivation, awareness, or even consciousness would emerge?

Newsome: Well let me answer that in a couple of ways. First, I dont think that its a fundamental divide. I dont think that theres anything magical inside our brains associated with the molecules carbon and oxygen, hydrogen and nitrogen. I do this thought experiment sometimes with groups where I say, Ive got a 100 billion neurons in my brain, but imagine I could pull one of them out and replace it with a little silicone, or name your substance, neuron that mimicked all the actions of that natural neuron perfectly. It received its inputs, it gave its outputs to the downstream neurons, can even modulate those connections with some neuromodulator substance, it can sense some: would those still be Bill with this one artificial neuron inside my brain along with a 100 billion natural ones? And I think the answer would be yes. I dont think thered be anything fundamentally different about my consciousness and about my feeling. And then you just say, Well what if its two?

Li: Right.

Newsome: What if its three? And you get up to 100 billion, after a while, and my deep feeling is that if those functional interactions are well mimicked by some artificial substance, that we will have a conscious entity there. I think it may well be that entity needs to be hooked up to the outside world through a body because so much of our learning and our feeling comes through experience. So I think robotics is a big part of the answer here. I dont like the idea of disembodied conscious brains inside a silicon computer somewhere. Im deeply skeptical of that.

Li: Its like the movie, Her.

Newsome: Yeah. I dont think the divides fundamental, I dont think its magic. But the only place I know that consciousness exists, and that these intense feelings take place, is in the brains of humans, certainly in a lot of other mammals, maybe all other animals, but probably in birds and others as well.

But I think that neuroscience is kind of suited now, and artificial intelligence as its constituted now, there may be a fundamental divide just because they start with different presumptions, different goals of the kind that weve discussed here for the last half hour.

Does that make any sense to you, or am I just babbling here?

Li: No, no, its making some sense to me but let me try to share my point of agreement and disagreement. My point of agreement is that, like you said, where we are, the deep learning algorithm and also our understanding of the brain, is still so rudimentary. And from the AI point of view, its just so far, the gap between what todays AI or foreseeable AI can do to what this natural intelligence from computation to emotion to consciousness, its just so far I really dont see that the current architecture and mathematical guiding principle can get us there. What I dont have an answer is when you say 100% of your neurons are replaced.

Newsome: But perfectly mimicking the functional relationships of the originals.

Li: First of all, I dont know what perfectly mimicking means in that because were in counterfactual scenario. Like, maybe we can perfectly mimic up to this point of your life where your neurons are replaced, but what about all the future? Is that really Bill? Its almost a philosophical question, that I dont know how to answer. But I think this consciousness question is at the core of some of neuroscience researchers pursuit, as well as a very intriguing question for AI as a field.

Newsome: So consciousness, I call it the C word, and mostly I dont utter the C word. But it is maybe the single most real, as Descartes thought, and interesting feature of our internal mental lives, so its certainly worth thinking about, both from a neuroscience point of view and an artificial intelligence point of view.

A lot of the muddiness about that word comes because we use it to mean so many different things. We use it to mean a pathological state, somebodys unconscious rather than conscious. We use it to mean a natural state called sleep, and people are asleep and not conscious. Or we use it to mean: Im conscious of this TV screen in front of me and Im not conscious of the shoes on my feet at this particular point in time. Or we can use it at a much higher level, that I am conscious of the fact that Im going to exist, that Im going to die, that I have a limited time on this planet and I need to find as much meaning from those years as possible.

And so you have to sort of hone in on what youre really trying to understand with the word. I think the one thats most common is simply what were conscious of at any moment, what were aware of-

Li: Awareness.

Newsome: A phenomenal awareness, like the philosophers call it. Many of your listeners will be familiar with David Chalmers and his notion of the hard problem of consciousness and the easy problem of consciousness. If youre not, its definitely worth getting familiar with them. Chalmers says that theres some things that neuroscientists are going to solve. Were going to solve the easy problems. Were going to solve attention, were going solve memory, were going to solve visual perception, were going solve visual coordination: all these features of conscious beings were going to solve, because we can see in principle the outlines of an answer to them, even though were far from having any details.

But what he says is the hard problem is why should some biological machinery hooked together in a particular way, why should there be any internal feelings at all that go along with that, that were conscious of? Conscious of being happier, conscious of being sadder, conscious of seeing red, or conscious of seeing green. Why is there that phenomenal experience?

And one of the things Ive learned as a neurobiologist is that I can ask questions up to a certain point in animals, like I can electrically stimulate different parts of the brain, and I can elicit very sophisticated kinds of responses and behavioral responses, and yet, I do not know what that animal is actually feeling at the moment. Theres this first-person experience of our beings, and presumably of other animals beings, that is very difficult to know how we would describe that in any kind of objective terms, any kind of math that you could-

Li: The Qualia experience.

Newsome: Qualia, exactly. And thats the hard problem. Ill tell you, most neuroscientists, the large majority of neuroscientists, would deny that there was a hard problem of consciousness. Its almost an ideology, honestly, because neuroscientists believe in the supremacy of their field. Its a very deep commitment, and that once we get a mature neuroscience 500 years from now, however long it takes, there will be nothing about the brain or the mind left to explain.

And people who take the hard problem of consciousness seriously say, It may be that an intrinsically third-person science cannot account for what is intrinsically first-person experience. That there just may be a category of mismatch. And so I give credibility to that, but Im an unusual neuroscientist in giving credibility to that.

Li: Yeah, youre a very open-minded neuroscientist. I remember as a physics student at Princeton some physicists said that humanity is incapable of understanding the universe to its deepest depth because we are part of it, and its hard to study within something, the totality of that thing.

But just to be a little more concrete on a consciousness note for AI, one of the narrower definitions of consciousness is awareness; not even this deep awareness, but contextual awareness. And one of my favorite quotes of AI come from the 70s, that goes like this (and keep in mind, this is the 70s). It says: The definition of todays AI is the computer can make a perfect chess move without realizing the room is on fire. Of course, we can change the word chess move to a different game, like Go or anything else, but todays AI algorithm, not to mention the deeper level of awareness, does not even have that contextual awareness. And this is five decades later, so we have a long way to go.

Read more from the original source:
What is Computation's Role in Neuroscience? - Stanford University News

Neuroscientists receive ERC Synergy Grant to explore the neural basis of cognition – News-Medical.Net

Reviewed by Emily Henderson, B.Sc.Nov 5 2020

A Norwegian-Israeli team of neuroscientists has been awarded an ERC Synergy Grant to explore the biological basis of spatial operations in the brain.

Humans have long wondered about the origins and workings of the mind. How does living matter generate memories, thoughts, imagination, the ability to plan? How these high-level functions are created from activity in brain cells remains one of the greatest mysteries of life. Current advances in neuroscience may finally unravel the secret of how higher cognitive functions emerge from the brain.

With a Synergy Grant funded by the European Research Council (ERC), investigators at the Kavli Institute for Systems Neuroscience at the Norwegian University of Science and Technology and the Edmond and Lily Safra Center for Brain Sciences and the Racah Institute of Physics at the Hebrew University of Jerusalem aim to explore the neural basis of cognition through focused study of one well-defined cognitive function - the ability to map our own location in space.

"There is an excitement, a sense of revolution in systems neuroscience today," says Edvard Moser, Founding Director of the Kavli Institute for Systems Neuroscience and Co-Director of Centre for Neural Computation.

After decades of studying single cells, wondering what kind of joint dynamics they take part in, neuroscientists are currently experiencing a total transformation of their field of study. A breakthrough in technology has made this possible.

"At the Kavli Institute for Systems Neuroscience, we are now replacing the old single-cell recording systems with high-site-count Neuropixels silicon probes and portable 2-photon microscopes," he said.

These tools, developed within the last year or two, allow Kavli researchers to record and visualize simultaneous activity from thousands of neurons interacting with each other during cognitive operations.

The technological advancement is not just a linear summation of information from individual brain cells. By enabling studies of how large populations of neurons work together, it brings our inquires to another functional level where we can ask how cells collaborate, rather than looking for the properties of individual cells.

Our brains generate a broad spectrum of higher cognitive functions that make up our intellectual capabilities. These brain functions emerge from the interactions between thousands of cells interconnected in large neural networks. This is the level of granularity from which we are now recording."

Edvard Moser, Founding Director of the Kavli Institute for Systems Neuroscience and Co-Director of Centre for Neural Computation

However, experimental measurements alone are not enough. Experiments must be guided by theoretical models of how neural networks create their outputs, which can in turn be tested experimentally. It is a matter of testing whether the map fits the landscape and of understanding the landscape through the map.

Some of the most promising theories in neuroscience during the last 40-50 years are called continuous attractor network (CAN) theories. Attractor network theories predict how neural networks in the brain operate through specific connections between cells in the network.

"CAN theories evolved at the Hebrew University in Jerusalem, and there is still no place on earth that better understands and moves these theories forward," Moser said. "Yoram Burak is a member of the computational neuroscience community at the Hebrew University and he is, in my opinion, the strongest theoretician of his generation in this field."

The ERC-funded research project KiloNeurons builds on the synergy created by merging approaches from theoretical physics with neurobiology and psychology. Pairing the most promising theory with the best-mapped higher cognitive functions provides a unique opportunity to explore how the brain works.

The ERC funding provides a unique opportunity to understand how the brain works, the researchers say.

"Our goal is to uncover how a cognitive brain function is generated through interactions between thousands of cells in the cortex," Burak says. Attractor network theories propose that activity patterns in the brain are formed through specific connections within neural networks. In the case of spatial orientation, attractor networks result in activity patterns that enable a sense of location and direction.

"Our point of departure is the higher brain function that provides us with a sense of location and supports navigation. CAN theories are highly developed for the brain systems that we use to find our way; we know the elements and properties of these systems, such as the grid cell; and the behavior of wayfinding is easy to measure. The project has all elements in place for breakthrough mechanistic insight to be realized," Moser said.

"Understanding attractor networks is important for any neuroscientist who wants to understand how activity patterns are generated in the brain. Attractor networks operate throughout the brain in many different systems, so demonstrating their existence, and finding out how they operate, is key to a broad understanding of cognition," he said.

It will also help us uncover what goes wrong when cognitive functions are compromised in neurological conditions, as in Alzheimer's disease, or in psychiatric syndromes - which will be a step towards exploring the potential for new therapies.

Read more here:
Neuroscientists receive ERC Synergy Grant to explore the neural basis of cognition - News-Medical.Net

Neuroscience Market Analysis By Top Leaders 2020- Global Industry Growth By Size, Share, Revenue And Value Chain, Emerging Technologies Future Trends…

The Neuroscience research report covers the current scenario and the growth prospects of the global Neuroscience industry forecast 2020 2027. The report enlists several important factors, starting from the basics principal to advanced market intelligence which play a vital part in strategizing. Neuroscience manufacturers and is a important source of guidance and direction for companies and individuals interested in the Neuroscience industry.

The research presents a complete assessment of the market and contains Future trend, Current Growth Factors, attentive opinions, facts, historical data, and statistically supported and industry validated market data. The market report proposes complete synopsis of the market, covering several characteristics such as product definition, market breakdown based on several constraints, supply chain analysis, and the fundamental Key Players outlook.

Download FREE PDF Brochure Of This Report @ https://www.coherentmarketinsights.com/insight/request-pdf/2487

Market-research techniques encompass qualitative techniques. The report helps the user to strengthen decisive power to plan their strategic moves to launch or expand their businesses by offering them a clear picture of this market. Neuroscience Market Research Report gives current competitive analysis and also valuable insights to clients/industries, which will assist them to prepare a new strategy to expand or penetrate in a global Neuroscience market.

The Neuroscience Market report provides valuable and unique information which is very essential. Further it also covers key players, application and future market condition. This information is extremely important for new and growing company to mark themself over the market

This report is segmented into several key Regions, consumption, revenue and market growth with high frequency pivot in these regions, from2020 to 2027 (forecast), covering United States, Europe, China, Japan, India, and Southeast Asia and focused on different aspects like market revenue, consumption, production, market share besides the growth pace.

Competitive Analysis:

The key players are highly focusing innovation in production technologies to improve efficiency and shelf life. The best long-term growth opportunities for this sector can be captured by ensuring ongoing process improvements and financial flexibility to invest in the optimal strategies. Company profile section of players includes its basic information like legal name, website url, headquarters, its market position, historical background and top 5 closest competitors by Market capitalization / revenue along with contact information. Each player/ manufacturer revenue figures, growth rate and gross profit margin is provided in easy to understand tabular format for past 5 years and a separate section on recent development like mergers, acquisition or any new product/service launch etc.

Major Players Are: Alpha Omega, Inc., GE Healthcare, Axion Biosystems, Inc., Siemens Healthineers, Blackrock Microsystems LLC, Femtonics Ltd., Intan Technologies, LaVision Biotec GmbH, Mediso Medical Imaging Systems, Neuralynx Inc., NeuroNexus Technologies, Inc., Newport Corporation, Plexon Inc., Noldus Information Technology, Scientifica Ltd., Sutter Instrument Corporation, Thomas Recording GmbH, and Trifoil Imaging Inc.

Important Features of the Neuroscience Market:

Buy This Research Study Report For Quick [emailprotected] https://www.coherentmarketinsights.com/insight/buy-now/2487

About Coherent Market Insights:

Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contact Us:

Mr. ShahCoherent Market Insights1001 4th Ave, #3200Seattle, WA 98154Phone: US +12067016702 / UK +4402081334027Email: [emailprotected]

See the article here:
Neuroscience Market Analysis By Top Leaders 2020- Global Industry Growth By Size, Share, Revenue And Value Chain, Emerging Technologies Future Trends...

This Brain Region Predicts the Consequences of Our Actions – Technology Networks

Our minds can help us make decisions by contemplating the future and predicting the consequences of our actions. Imagine, for instance, trying to find your way to a new restaurant near your home. Your brain can build a mental model of your neighborhood and plan the route you should take to get there.

Scientists have now found that a brain structure called the anterior cingulate cortex (ACC), known to be important for decision making, is involved in using such mental models to learn. A new study of mice published today in Neuron highlights sophisticated mental machinery that helps the brain simulate the results of different actions and make the best choice.

"The neurobiology of model-based learning is still poorly understood," said Thomas Akam, PhD, a researcher at Oxford University and lead author on the new paper. "Here, we were able to identify a brain structure that is involved in this behavior and demonstrate that its activity encodes multiple aspects of the decision-making process."

Deciphering how the brain builds mental models is essential to understanding how we adapt to change and make decisions flexibly: what we do when we discover that one of the roads on the way to that new restaurant is closed for construction, for example.

"These results were very exciting," said senior author Rui Costa, DVM, PhD, Director and CEO of Columbia's Zuckerman Institute, who started this research while an investigator at the Champalimaud Centre for the Unknown, where most of the data was collected. "These data identify the anterior cingulate cortex as a key brain region in model-based decision-making, more specifically in predicting what will happen in the world if we choose to do one particular action versus another."Model or model-free?

A big challenge in studying the neural basis of model-based learning is that it often operates in parallel with another approach called model-free learning. In model-free learning, the brain does not put a lot of effort into creating simulations. It simply relies on actions that have produced good outcomes in the past.

You might use a model-free mental approach when traveling to your favorite restaurant, for example. Because you've been there before, you don't need to invest mental energy in plotting the route. You can simply follow your habitual path and let your mind focus on other things.

To isolate the contributions of these two cognitive schemes - model-based and model-free - the researchers set up a two-step puzzle for mice.

In this task, an animal first chooses one of two centrally located holes to poke its nose into. This action activates one of two other holes to the side, each of which has a certain probability of providing a drink of water.

"Just like in real life, the subject has to perform extended sequences of actions, with uncertain consequences, in order to obtain desired outcomes," said Dr. Akam.

To do the task well, the mice had to figure out two key variables. The first was which hole on the side was more likely to provide a drink of water. The second was which of the holes in the center activated that side hole. Once the mice learned the task, they would opt for the action sequence that offered the best outcome. However, in addition to this model-based way of solving the puzzle, mice could also learn simple model-free predictions, e.g. "top is good," based on which choice had generally led to rewarding in the past.

The researchers then changed up the experiment in ways that required the animals to be flexible. Every now and then, the side port more likely to provide a drink would switch - or the mapping between central and side ports would reverse.

The animals' choices as things changed revealed what strategies they were using to learn.

"Model-free and model-based learning should generate different patterns of choices," said Dr. Akam. "By looking at the subjects' behavior, we were able to assess the contribution of either approach."

When the team analyzed the results, about 230,000 individual decisions, they learned that the mice were using model-based and model-free approaches in parallel.

"This confirmed that the task was suitable for studying the neural basis of these mechanisms," said Dr. Costa. "We then moved on to the next step: investigating the neural basis of this behavior."

A neural map of model-based learning

The team focused on a brain region called the anterior cingulate cortex (ACC).

"Previous studies established that ACC is involved in action selection and provided some evidence that it could be involved in model-based predictions," Dr. Costa explained. "But no one had checked the activity of individual ACC neurons in a task designed to differentiate between these different types of learning."

The researchers discovered a tight connection between the activity of ACC neurons and the behavior of their mice. Simply by looking at patterns of activity across groups of the cells, the scientists could decode whether the mouse was about chosen one hole or another, for example - or whether it was receiving a drink of water.

In addition to representing the animal's current location in the task, ACC neurons also encoded which state was likely to come next.

"This provided direct evidence that ACC is involved in making model-based predictions of the specific consequences of actions, not just whether they are good or bad," said Dr. Akam.

Moreover, ACC neurons also represented whether the outcome of actions was expected or surprising, thereby potentially providing a mechanism for updating predictions when they turn out to be wrong.

The team also turned off ACC neurons while the animals were trying to make decisions. This prevented the animals from responding flexibly as the situation changed, an indicator that they were having trouble using model-based predictions.

Understanding how the brain controls complex behaviors like planning and sequential decision making is a big challenge for contemporary neuroscience.

"Our study is one of the first to demonstrate that it is possible to study these aspects of decision-making in mice," said Dr. Akam. "These results will allow us and others to build a mechanistic understanding of flexible decision making."

Reference: Akam T, Rodrigues-Vaz I, Marcelo I, et al.The Anterior Cingulate Cortex Predicts Future States to Mediate Model-Based Action Selection. Neuron. 2020. doi:10.1016/j.neuron.2020.10.013

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Continue reading here:
This Brain Region Predicts the Consequences of Our Actions - Technology Networks

Kentucky Neuroscience Institute Leading the Way in New Treatment Improving Quality of Life for Complex Epilepsy Patients – UKNow

LEXINGTON, Ky. (Nov.4, 2020) In America,3.5 million people have epilepsy. Approximately onein 26 people in the United States will develop epilepsy at some point in their lifetime. In Kentucky, more than 2% of the population is living with this neurologic condition characterized by unpredictable seizures.

Epilepsy has numerous physical and emotional costs. Patients can experience problems keeping up in school or at work, depression and/or social isolation, physical injury during a seizure, and can even die from a seizure. They may not be allowed to drive, play sports, or have other restrictions that impact their professional or personal lives.

Despite the development of several new anti-seizure medications or anti-epileptic drugs over the past couple of decades, approximately 30-40% of epilepsy patients remain refractory or resistant to medical treatment.

Vivian Albrektsen falls into that category. The 42-year-old, who is legally blind, was having up to 25 seizures in one day and had taken more than 10 different medications. Her seizure focus could not be clearly localized and she was not amenable to resective epilepsy surgery. Vivian would experience brief honeymoon periods after trying a new medication.

What happens with me is Ill get a good seizure medication," she said."It will work for maybe six months and then my brain talks to itself and says you know this has been working we need to try something else.

Vivian has been seeing Dr. Meriem Bensalem-Owen, director of UK HealthCares Epilepsy Program, for almost a decade after receiving her epilepsy diagnosis. In 2018, Bensalem-Owen and her team were thrilled when the Food and Drug Administration approved the utilization of Deep Brain Stimulation (DBS) devices as a treatment for epilepsy giving them a new option to provide some hope for patients like Vivian.

DBS has been a treatment option for other neurological disorders for several years. UK HealthCare neurosurgeon Dr. Craig van Horne has been a leader in using DBS treatment for Parkinsons disease. Bensalem-Owen says the principle of DBS for movement disorders like Parkinsons disease and epilepsy is the same however the targets are different.

DBS implantation requires two surgeries:one to implant the generatorand a secondto implant leadsthat go from the chest and neck into the brain. The location of where the leadsare implanted is how Bensalem-Owen says DBS for epilepsy differs from DBS used for other disorders. The goal of DBS for epilepsy is to disrupt certain electrical activity in the brain to control seizures. Over time,neuromodulation can be achieved. This meansDBS therapy is designed to change (modulate) how brain cells work by giving electrical stimulation to brain areas involved in the patients seizures.

Brain cells are all the time misfiring and firing. When the firing becomes synchronized it can cause seizures. This device disrupts that synchrony or harmony, saidBensalem-Owen. When telling patients about the treatment she uses, she compares it to theconductor of an orchestra. We disrupt the conductor with small electrical impulses so the right directions cannot be given to the whole orchestra.

Dr. van Horne successfully implanted one of Dr. Bensalem-Owens patients with the first DBS device in Kentucky shortly after getting FDA approval. Since then six others have received a DBS implant at UK HealthCare, including Vivian. This represents the highest number of epilepsy patients implanted with this device in Kentucky.

The combination of medication and DBS allowed Vivian to go several months seizure-free.

Before the DBS it was like a revolving door every several months of changing medications. I was getting tired of it, said Vivian. She credits Dr. Bensalem-Owen and UK HealthCare with saving her life.

Bensalem-Owen says seeing a patient go several months without a seizure is not consistently observed with DBS. She says those that qualify for this type of treatment are the most difficult to get seizures under control with medications and who cannot have removal of the part of the brain that causes seizures to happen.

Sometimes we dont achieve seizure freedom despite our best efforts," she said. "The goal then is to really attempt to improve the quality of life and the seizure burden.

Working with patients like Vivian - who have endured years of changes in medications, surgeries, and side effects - to find the right treatment plan isnt always easy, but it is a job that Bensalem-Owen and her team take great pride in.

We are here to support our patients, some of them are very complex," she said."Some of them are difficult not just for the type of their epilepsy but because of co-existing medical conditions and difficult social situations. They dont get to choose how they are. My colleagues and I like the challenge and we are here to help everyone with difficult to control epilepsy.

Bensalem-Owen says so far what they are seeing in the seven DBS device recipients at UK is promising.

Overall, we see an improvement in frequency, severityand recovery from the seizures,she said, noting thatbeing the first in the state to successfully implant an epilepsy patient and also a leader in Kentucky is a great honor. We had these patients just waiting for something to happen with new medication options, or we tried epilepsy surgery and it failed or they werent eligible. So, then it was like what do we do now? We would just wait for the next thing to come up. For us, this is an addition to our toolbox. We are thrilled to have it because we want to do all we can to help our patients have a better quality of life, and to not live in fear of injuries or death from seizures.

--

DBS treatment can only be done in an accredited National Association of Epilepsy Centers (NAEC)Level 4 epilepsy centers. UK HealthCare Kentucky Neuroscience Institute is proud to maintain a Level 4 NAEC Accreditation the highest rating by the National Association of Epilepsy Centers. UK HealthCare is the only Level 4 epilepsy center in the greater Lexington area.

See more here:
Kentucky Neuroscience Institute Leading the Way in New Treatment Improving Quality of Life for Complex Epilepsy Patients - UKNow

Neuroscience Sweden is starting to study psychedels in the treatment of depression: the results could be revolutionary – Pledge Times

This is one of the most significant things that has happened in psychiatry in the last 40 years if previous research results prove to be correct in a clinical trial, the researcher says.

In Sweden The Karolinska Institut will start this fall research, which aims to investigate the effect of psilocybin in the treatment of depression.

Psilocybin is a psychedelic substance that causes aberrant, dreamy states of consciousness. It occurs naturally in some fungi. This is the first clinical trial of psychedelics in Sweden.

.

Read more:
Neuroscience Sweden is starting to study psychedels in the treatment of depression: the results could be revolutionary - Pledge Times

Neuroscience Antibody or Research Reagents Market to Witness a Pronounce Growth – News by aeresearch

A new research study has been presented offering a comprehensive analysis on the Global Neuroscience Antibody or Research Reagents market where user can benefit from the complete market research report with all the required useful information about this market. This is a latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact is covered in the report. The report discusses all major Neuroscience Antibody or Research Reagents market aspects with expert opinion on current market status along with historic data. Neuroscience Antibody or Research Reagents Industry report is a detailed study on the growth, investment opportunities, market statistics, growing competition analysis, major key players, industry facts, revenues, market shares, business strategies, top regions, demand, and developments.

The Neuroscience Antibody or Research Reagents market report contains an extensive analysis of this industry space and provides crucial insights regarding the major factors that are impacting the remuneration graph as well as fueling the industry growth. The study also offers a granular assessment of the regional spectrum alongside regulatory outlook of this market space. Moreover, the document measures the factors that are positively influencing the market outlook as well as presents a detailed SWOT analysis. Information such as limitations & restraints faced by new entrants and market majors alongside their individual effect on the growth rate of the companies is enlisted. The research also elaborates on the impact of COVID-19 on future remuneration and growth avenues of the market.

Highlighting the competitive framework of Neuroscience Antibody or Research Reagents market:

Request Sample Copy of this Report @ https://www.aeresearch.net/request-sample/346200

From the regional point of view of Neuroscience Antibody or Research Reagents market:

Additional data emphasized in the Neuroscience Antibody or Research Reagents market report:

Years considered for this report:

Key Questions Answered In this Report:

What is the overall Neuroscience Antibody or Research Reagents market size in 2019? What will be the market growth during the forecast period i.e. 2020-2025?

Which region would have high demand for product in the upcoming years?

What are the factors driving the growth of the Neuroscience Antibody or Research Reagents market?

Which sub-market will make the most significant contribution to the market?

What are the Neuroscience Antibody or Research Reagents market opportunities for existing and entry-level players?

What are various long-term and short-term strategies adopted by the market players?

What are the key business strategies being adopted by new entrants in the Neuroscience Antibody or Research Reagents market?

Request Customization on This Report @ https://www.aeresearch.net/request-for-customization/346200

More:
Neuroscience Antibody or Research Reagents Market to Witness a Pronounce Growth - News by aeresearch