Category Archives: Genetics

COVID-19 Roundup: The Unvaccinated Fuel Hospitalizations; Genetic Link to Severe Illness; and Children’s Infection Rate – Baptist Health South Florida

This Virus Will Evolve: Concerns Grow Over Variants, New Surge Among the Unvaccinated

Just as public health officials feared, the combination of too many unvaccinated people and the more contagious delta strain of the coronavirus has led to new COVID-19 surges across the nation.

The vast majority of patients being hospitalized now for COVID-19 are unvaccinated, explains Sergio Segarra, M.D., the chief medical officer with Baptist Hospital, part of Baptist Health South Florida. And many of them are young adults in their 20s and 30s who are getting extremely sick.

Sergio Segarra, M.D., chief medical officer with Baptist Hospital, part of Baptist Health South Florida.

From the very beginning, that was a concern of mine that we do not get a substantial portion of the population vaccinated, said Dr. Segarra, who was interviewed by CNN this week on the latest surge in COVID-19 hospitalizations in Florida and nationwide.

The latest update from the Florida Health Department shows that 58 percent of the states population over the age of 12 has been vaccinated. Among the most populated South Florida counties, Miami-Dade registered a 73 percent vaccination rate; Broward 66 percent, and Palm Beach 62 percent, according to the latest data.

But there is a persistent group of people who, for whatever reason, are not getting vaccinated. The more people that get infected, the greater the likelihood that the virus evolves into more variants, said Dr. Segarra.

On Thursday, U.S. Surgeon General Vivek Murthy, M.D, released the first surgeon generals advisory of his time with the Biden administration, describing the urgent threat posed by the rise of false information about COVID-19 and vaccines. Misinformation has caused confusion and led people to decline COVID-19 vaccines, reject public health measures such as masking and physical distancing, and use unproven treatments, states the advisory.

The U.S. Centers for Disease Control and Prevention said this week that the delta variant is responsible for 58 percent of newly confirmed cases nationwide from June 20 through July 3. The COVID-19 vaccines approved for use in the U.S. effectively protects people from severe illness if they are infected with the delta strain of the virus, the CDC says.

With more people getting the virus, whether they get minor symptoms or get significantly ill and end up in the hospital, theres a greater chance that a variant is going to occur, explains Dr. Segarra. The virus will evolve.

The worse-case scenario, which fortunately has not occurred, says Dr. Segarra, is the emergence of a variant that is resistant to the currently available vaccines.

That hasnt happened yet, but thats something that does keep me up, says Dr. Segarra. Thats something that makes me worry. And I would hate to think that 10 years from now theyre going to say, Wow, those people back in 2021 could have gotten the vaccine, but they didnt. And now theres some terrible variant out there that is creating all kinds of havoc. So, that does worry me.

For more than a year since the beginning of the pandemic, researchers and clinicians have been trying to understand why some people develop severe COVID-19 illness, while others show few if any symptoms. Risk factors have included age and underlying medical conditions.

However, variations in the human genome have not been thoroughly investigated as a possible risk factor that determines a mild or severe response to a COVID-19 infection. That is, until now.

A new study published in Nature, led by the COVID-19 Host Genomics Initiative (HGI), confirms or newly identifies 13 genes that appear to play a role in susceptibility to the coronavirus, or that have an affect on the severity of illness. The researchers established international collaboration when the pandemic started to focus on genetics. This collaboration included about 3,000 researchers and clinicians and data from 46 studies involving more than 49,000 individuals with COVID-19.

HGI teams involved in the analysis include both academic laboratories and private firms from two dozen countries, including the U.S. Several of the 13 significant genes identified by researchers had previously been linked to other illnesses, including autoimmune diseases.

One example is the gene TYK2. Variants of this gene can increase susceptibility to infections by other viruses, bacteria and fungi, the studys authors write. Individuals who carry certain mutations in TYK2 are at increased risk of being hospitalized or developing critical illness from COVID-19. Another example is the gene DPP9. The authors found a variant in this gene that increases the risk of becoming critically ill with COVID-19. It is the same variant that can increase the risk of a rare pulmonary disease characterized by scarring of the lung tissue.

This study is important not only for advancing our understanding of human susceptibility to COVID-19; it also underlines the value of global collaborations for clarifying the human genetic basis of variability in susceptibility to infectious diseases, states a supplemental article to the study published in Nature.

Children represent a growing share of COVID-19 infections in the United States, while severe illness from the coronavirus remains rare among young kids and adolescents. Researchers caution, however, that studies are needed to determine long-term health effects of COVID-19 on children.

According to the American Academy of Pediatrics (AAP), children accounted for about 2 percent of infections at the onset of the pandemic last year. By the end of May of this year, kids accounted for 24 percent of new weekly infections, the AAP said. The cummulative percentage of COVID-19 cases involving children is about 14 percent, the organization states.

More than 4 million children have tested positive for COVID-19 in the U.S., 18,500 were hospitalized and 336 have died from the disease, according to the latest update from the AAP.

At this time, it still appears that severe illness due to COVID-19 is rare among children, the AAP states. However, there is an urgent need to collect more data on longer-term impacts of the pandemic on children, including ways the virus may harm the long-term physical health of infected children, as well as its emotional and mental health effects.

The U.S. Centers for Disease Control and Prevention (CDC) recommends everyone 12 years and older should get a COVID-19 vaccination to help protect against COVID-19. At this time, children 12 years and older are able to get the Pfizer-BioNTech COVID-19 vaccine. In May, the CDC and U.S. Food and Drug Administration approved the use of the Pfizer vaccine for adolescents after a clinical trial involving 2,260 12-to-15-year-olds found that the Pfizer-BioNTEch vaccines efficacy was 100 percent. This official CDC action opens vaccination to approximately 17 million adolescents in the United States and strengthens our nations efforts to protect even more people from the effects of COVID-19, stated CDC Director Rochelle Walensky in a statement.

Tags: COVID-19, COVID-19 vaccines

See the rest here:
COVID-19 Roundup: The Unvaccinated Fuel Hospitalizations; Genetic Link to Severe Illness; and Children's Infection Rate - Baptist Health South Florida

New CRISPR/Cas9 Plant Genetics Technology to Improve Agricultural Yield and Resist the Effects of Climate Change – SciTechDaily

Arabidopsis plants were used to develop the first CRISPR-Cas9-based gene drive in plants. Credit: Zhao Lab, UC San Diego

New technology designed to breed more robust crops to improve agricultural yield and resist the effects of climate change.

With a goal of breeding resilient crops that are better able to withstand drought and disease, University of California San Diego scientists have developed the first CRISPR-Cas9-based gene drive in plants.

While gene drive technology has been developed in insects to help stop the spread of vector-borne diseases such as malaria, researchers in Professor Yunde Zhaos lab, along with colleagues at the Salk Institute for Biological Studies, demonstrated the successful design of a CRISPR-Cas9-based gene drive that cuts and copies genetic elements inArabidopsisplants.

Breaking from the traditional inheritance rules that dictate that offspring acquire genetic materials equally from each parent (Mendelian genetics), the new research uses CRISPR-Cas9 editing to transmit specific, targeted traits from a single parent in subsequent generations. Such genetic engineering could be used in agriculture to help plants defend against diseases to grow more productive crops. The technology also could help fortify plants against the impacts of climate change such as increased drought conditions in a warming world.

A schematic representation of a new plant gene drive using CRISPR/Cas9 technology. Credit: Zhao Lab, UC San Diego

The research, led by postdoctoral scholar Tao Zhang and graduate student Michael Mudgett in Zhaos lab, ispublished in the journalNature Communications.

This work defies the genetic constraints of sexual reproduction that an offspring inherits 50% of their genetic materials from each parent, said Zhao, a member of the Division of Biological Sciences Section of Cell and Developmental Biology. This work enables inheritance of both copies of the desired genes from only a single parent.The findings can greatly reduce the generations needed for plant breeding.

The study is the latest development by researchers in theTata Institute for Genetics and Society(TIGS) at UC San Diego, which was built upon the foundation of anew technology called active genetics with potential to influence population inheritance in a variety of applications.

Developing superior crops through traditional genetic inheritance can be expensive and time-consuming as genes are passed through multiple generations. Using the new active genetics technology based on CRISPR-Cas9, such genetic bias can be achieved much more quickly, the researchers say.

I am delighted that this gene drive success, now achieved by scientists affiliated with TIGS in plants, extends the generality of this work previously demonstrated at UC San Diego, to be applicable in insects and mammals, said TIGS Global Director Suresh Subramani. This advance will revolutionize plant and crop breeding and help address the global food security problem.

Reference: Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis by Tao Zhang, Michael Mudgett, Ratnala Rambabu, Bradley Abramson, Xinhua Dai, Todd P. Michael and Yunde Zhao, 22 June 2021, Nature Communications.DOI: 10.1038/s41467-021-24195-5

Coauthors of the paper include: Tao Zhang, Michael Mudgett, Ratnala Rambabu, Bradley Abramson, Xinhua Dai, Todd Michael and Yunde Zhao.

The research was funded by TIGS-UC San Diego and a training grant from the National Institutes of Health.

The rest is here:
New CRISPR/Cas9 Plant Genetics Technology to Improve Agricultural Yield and Resist the Effects of Climate Change - SciTechDaily

Genetics, Socioeconomic Factors Each Tied to Diabetes and Obesity – MedPage Today

Genetic and socioeconomic factors were each independently associated with increased risk for both type 2 diabetes (T2D) and obesity, according to a biobank study of Americans of European ancestry.

Among more than 27,000 white individuals in the Mass General Brigham Biobank, those in the highest genetic risk quintile were 5.7 times more likely to have T2D and 4.8 times more likely to have obesity compared with those in the lowest risk quintile, reported Sara Cromer, MD, of Massachusetts General Hospital in Boston.

Overall, people in both the highest genetic risk and socioeconomic status (SES) risk quintiles were 15.7 and 9.7 times more likely to have T2D and obesity, respectively, than those in the lowest risk quintiles (P<0.05 for both), according to findings presented at the virtual American Diabetes Association Scientific Sessions.

"Both of these factors should be considered when counseling patients about their individual risk and when considering interventions ... at the population level," Cromer said during her presentation.

In adjusted models, various factors were independently associated with T2D risk:

Similarly, these factors were independently associated with obesity risk:

For their study, researchers examined population data on 27,224 patients with available genetic information using electronic health care data and the Mass General Brigham Biobank. Mean age of participants was 61, while 53% were female.

To start, Cromer's team looked at several census tract-level SES measures in Boston, including education, income, and employment status. Here, scoring high on the social deprivation index (SDI) and lower population levels of college education strongly correlated with T2D and obesity, after adjusting for age and sex.

T2D status was determined based on a machine-learning phenotype, and obesity based on the phenotype or a maximum BMI 30. Genetic quintiles were determined via global extended polygenic risk scores.

For diabetes, those in the highest risk quintiles for college degree preponderance and for SDI were, respectively, 1.7 times and 1.7 times more likely to have T2D than those in the lowest risk quintiles. For obesity, these measures were 2.3 times and 1.9 times more likely for the highest versus lowest risk quintiles.

Researchers did not find any interaction between SES and genetic risk, Cromer noted. So, for example, living in a neighborhood with less SES risk does not help people overcome "bad genetics" when it comes to T2D or obesity risk, she told MedPage Today.

Cromer's team is currently conducting similar analyses of their Black and Hispanic biobank populations, she told MedPage Today. They plan to eventually conduct meta-analysis of the entire sample, featuring all the ethnicities and races. This first study was limited to white participants because the biobank population is about 15-20 times more white than either Black or Hispanic, she said, and because the available instruments are more reliable to assess those with European ancestry.

Ryan Basen reports for MedPages enterprise & investigative team. He has worked as a journalist for more than a decade, earning national and state honors for his investigative work. He often writes about issues concerning the practice and business of medicine. Follow

Disclosures

Cromer's spouse works for Johnson & Johnson Medical Devices Companies. Co-authors reported consultant work or other relationships with XY.ai, Goldfinch Bio, and Novo Nordisk. One co-author has a spouse who works for Emulate, and reported stock holdings in Invitae.

See the article here:
Genetics, Socioeconomic Factors Each Tied to Diabetes and Obesity - MedPage Today

Researchers discover genetic markers that drive the timing of first sex and birth – News-Medical.Net

An Oxford-led team, working with Cambridge and international scholars, has discovered hundreds of genetic markers driving two of life's most momentous milestones - the age at which people first have sex and become parents.

In a paper published today in Nature Human Behaviour, the team linked 371 specific areas of our DNA, called genetic variants (known locations on chromosomes), 11 of which were sex-specific, to the timing of first sex and birth. These variants interact with environmental factors, such as socioeconomic status and when you were born, and are predictors of longevity and later life disease.

The researchers conducted a Genome-Wide Association Study (GWAS), a search across the entire human genome, to see if there is a relationship between reproductive behaviour and a particular genetic variant. In the largest genomic study ever conducted to date, they combined multiple data sources to examine age at first sex (N=387,338) and birth (N=542,901) in men and women. They then calculated a genetic score, with all genetic loci combined explaining around 5-6% of the variability in the average age at sexual debut or having a first child.

Our study has discovered hundreds additional genetic markers that shape this most fundamental part of our lives and have the potential for deeper understanding of infertility, later life disease and longevity."

Professor Melinda Mills, Director of the Leverhulme Centre for Demographic Science at the University of Oxford and Nuffield College, and Study's First Author

The genetic signals were driven by social factors and the environment but also by reproductive biology, with findings related to follicle-stimulating hormone, implantation, infertility, and spermatid differentiation.

Professor Mills adds 'We already knew that childhood socioeconomic circumstances or level of education were important predictors of the timing of reproduction. But we were intrigued to find literally not only hundreds of new genetic variants, but also uncover a relationship with substance abuse, personality traits such as openness and self-control, ADHD and even predictive of some diseases and longevity .'

Professor Mills says, 'We demonstrated that it is a combination of genetics, social predictors and the environment that drives early or late reproductive onset. It was incredible to see that the genetics underlying early sex and fertility were related to behavioural dis-inhibition, like ADHD, but also addiction and early smoking. Or those genetically prone to postpone sex or first birth had better later life health outcomes and longevity, related to a higher socioeconomic status in during childhood.'

Genetic factors driving reproductive behaviour are strongly related to later life diseases such as Type 2 diabetes and cardiovascular disease.

'It is exciting that the genetics underlying these reproductive behaviours may help us understand later life disease.'

Professor Mills concludes, 'Starting your sexual journey early is rooted in childhood inequality but also has links with health problems, such as cervical cancer and depression. We found particularly strong links between early sexual debut, ADHD and substance abuse, such as early age at smoking. We hope our findings lead to better understanding of teenage mental and sexual health, infertility, later life disease and treatments to help.'

Source:

Journal reference:

Mills, M.C., et al. (2021) Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nature Human Behaviour. doi.org/10.1038/s41562-021-01135-3.

See the rest here:
Researchers discover genetic markers that drive the timing of first sex and birth - News-Medical.Net

In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More – GenomeWeb

NEW YORK Foundation Medicine and Flatiron Health announced this week that Foundations comprehensive genomic profiling tests will be available to order through Flatiron's OncoEMR platform. The integration will allow clinicians to electronically order, track, and receive Foundations test through OncoEMR, the companies said. Both Flatiron and Foundation are planning further integrations with the others comprehensive genomic profiling tests and electronic medical record systems, respectively.

Myriad Genetics this week said it has completed the sale of its Myriad RBM unit which specializes in providing laboratory research services to pharmaceutical companies to IQVIA subsidiary Q2 Solutions. When Myriad announced its intent to sell this business unit in May, it did not disclose the deal's financial details.

GenetronHealth said this week that it has entered a new partnership with the World Economic Forum under its Health and Healthcare Platform, where it is contributing its research insights, technologies, and industry experience. The platform's overall goal is to ensure worldwide equal access to the highest standards of health and healthcare.Genetroniscurrentlyparticipating in a sub-project,dubbedMoving Genomics to the Clinic, which seeks to promote the use of genetic testing in routine clinical practices by proving its utility and efficacy.

AccessHope, a City of Hope subsidiary, said this week that it has partnered with the Dana-Farber Cancer Institute to bring the latest cancer care expertise to patients and oncologists in the community. By partnering withAccessHope, Dana-Farber's experts will support oncologistswiththe latest advances in oncology,includingpersonalized treatments, clinical trials, promising investigational medications, and molecular testing. Patients in Massachusetts, Maine, New Hampshire, Vermont, Connecticut, Rhode Island, New York,and New Jersey, as well asthosein other parts of the country,can access these services through their employee benefits programs. City of Hope and Northwestern University's Robert H. Lurie Comprehensive Cancer Center are also foundational members ofAccessHope.

Molecular breath analysis startup Deep Breath Intelligencesaid this week that it has entered a collaboration with Lwenstein Medical, a sleep and respiratory medicine firm based inRheinland-Pfalz, Germany.Rotkreuz, Switzerland-based DBI said that it is applying artificial intelligence to identify breath biomarkers related to obstructive sleep apnea syndrome. DBIsaid ithas initiated a study on OSASin collaboration with Lwenstein Medical,using participantsbreath samples and applying DBIs patterned analytical algorithms to provide results.

Enable Biosciences said this week it is partnering with the California Department of Public Health to survey state residents for the presence of antibodies against SARS-CoV-2. As part of the program, more than 200,000 households in California will be invited to submit dried blood samples collected at home using kits developed by Enable Bio andtheCDPH. The samples will then be tested by Enable Bio for the presence of antibodies against SARS-CoV-2 to distinguish antibody response fromviralinfection versusresponse fromvaccination. Test results will provide information about the spread of COVID-19 in California and the uptake of vaccines for the disease, South San Francisco, California-based Enable Bio said. The project is a collaboration betweenthe company,theCDPH, Stanford University, and Gauss Surgical. The first survey period concluded June 15 with the second and third enrollment periods slated tobeginat the start of 2022.

NeoGensaid this week that it has extended itsglobalanimal genomicspartnership withGencove. Thepartnership allowsNeoGento offerGencove'sSkimSeeklow-pass sequencing technology to customers in the agricultural sector, including those in the bovine, canine,poultry, and swine industries. UsingGencove'ssequencingimputationplatform,NeoGensaid it can deliver increased genomics data with improved accuracy and flexibility.

Bioceptsaid this week ithas been added to the Russell Microcap Index. Michael Nall, Biocept's president and CEO,called the nodexceptionally exciting, as a driver ofawarenessfor the cancer liquid biopsy firm within thelargerglobal investment community.

Immunoviasaid this week that its American subsidiary hasreceived a CLIA Certificate of Registration,which isan important step in the accreditation of its laboratory in Marlborough, Massachusetts, and a prerequisite to receiving clinical laboratory licensure fromtheMassachusetts Department of Public Health. Clinical laboratory licensure is required beforeImmunoviacan begin testing patients with itsImmrayPanCan-d test, the firm said.According to the Centers for Medicare and Medicaid Services, a Certificate of Registration allows a laboratory toconduct moderate and/or high complexity testing until it is inspected to determine its compliance with the CLIA regulations.

In Brief This Week is a selection of news items that may be of interest to our readers but had not previously appeared onGenomeWeb.

Follow this link:
In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb

Genetics Research May Help Identify More Dangerous Strains of the Virus That Causes COVID-19 – SciTechDaily

Viral mutations during the COVID-19 pandemic could cause the SARS-CoV-2 virus to become more dangerous. A new study published inGenetic Epidemiologyhas examined the genetic code of SARS-CoV-2 viruses that have infected patients, looking for links between different mutations and patient deaths.

For the study, investigators analyzed 7,548 SARS-CoV-2 genomes of COVID-19 patients worldwide and looked for an association between genomic variants and mortality. In total, 29,891 locations in the viral genome were assessed.

One location was significantly linked with patient mortality. Mutations at this location cause changes in part of the SARS-CoV-2 spike protein, which plays a key role in viral entry into host cells.

When, in the fall of 2020, we applied methodology from genome-wide association studies to COVID-19 genomes, we noticed one locus in the COVID-19 genomes from Brazil that was associated with mortality and that later became part of the definition of the P.1 strain from Brazil, said co-lead author Georg Hahn, PhD, of Harvard University. The P1. strain was behind a deadly COVID-19 surge in the Latin American country. Its more contagious and more resistant to antibodies than the original strain.

For more on this research, see Genome-Wide Association Studies Accurately Flag More Deadly COVID-19 Variants.

Referemce: Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain by Georg Hahn, Chloe M. Wu, Sanghun Lee, Sharon M. Lutz, Surender Khurana, Lindsey R. Baden, Sebastien Haneuse, Dandi Qiao, Julian Hecker, Dawn L. DeMeo, Rudolph E. Tanzi, Manish C. Choudhary, Behzad Etemad, Abbas Mohammadi, Elmira Esmaeilzadeh, Michael H. Cho, Jonathan Z. Li, Adrienne G. Randolph, Nan M. Laird, Scott T. Weiss, Edwin K. Silverman, Katharina Ribbeck and Christoph Lange, 22 June 2021, Genetic Epidemiology.DOI: 10.1002/gepi.22421

Read more:
Genetics Research May Help Identify More Dangerous Strains of the Virus That Causes COVID-19 - SciTechDaily

Is It Too Late to Buy Fulgent Genetics Stock? – The Motley Fool

Fulgent Genetics(NASDAQ:FLGT) is arguably the cheapest coronavirus stock on the market -- if not the cheapest biotech of any type out here, with a price-to-earnings (P/E) valuation of just 6.6. What's more, the company has about $697.4 million in cash on its balance sheet and negligible debt. Subtract that from the company's $2.43 billion market cap, and Fulgent appears even more undervalued in terms of its enterprise value (EV).

Investors, however, are not buying into the discount story. After all, the company is heavily dependent on providing billable COVID-19 tests in the U.S., where the pandemic is largely subsiding as the government's mass vaccination campaign has successfully inoculated more than half of all adults already. Meanwhile, the stock is sitting on a 462% year-over-year gain. Given all that, is it too late for new investors to buy Fulgent Genetics?

Image source: Getty Images.

In the first quarter, Fulgent's revenue increased by a stunning 4,500% year over year to $359.4 million. Simultaneously, its net income rose to $200.7 million from a loss of $1.956 million in the prior-year period. The company billed for 3.8 million tests during the quarter -- about 290 times its test volume in Q1 2020.

Unfortunately, the company anticipates revenue from its non-COVID testing services to amount to just $100 million for the full year (gaining 174% year over year). If we assume that Fulgent's COVID tests will become irrelevant in the near future, then the stock is trading for about 17 times EV-to-sales. That is pretty expensive indeed.

Investors are probably giving the company less credit than it deserves. While new COVID-19 cases have declined sharply in many areas of the U.S. to levels below where they were in March 2020, that's simply not the case in many other areas in the world. In fact, Americans who want to travel internationally would still need to grab a negative COVID-19 test result, usually three days before departure, before heading to their destination.

That's not all; back in February, Fulgent was one of four labs selected to provide COVID-19 testing solutions to the Department of Defense. That contract is worth $2 billion in total and will last for up to five years. With all these coronavirus variants spreading, the company has a pretty sound value proposition in providing tests for national defense purposes and could supply many more in the future.

Aside from testing for COVID, Fulgent provides chromosome and gene-sequencing services that help physicians better detect cardiovascular illnesses, epilepsy, and hereditary risk factors for various types of cancer. Since many patients postponed getting these types of discretionary tests done during the pandemic, the company's gene-sequencing business is now experiencing a tailwind as people start visiting their doctors again for non-urgent reasons.

Overall, due to continued demand for COVID-19 tests for people traveling internationally, the possibility of more defense department stockpiling of such tests, and the company's solid gene-testing business, I think Fulgent has a fair shot of achieving its $830 million revenue guidance for the full year.

That number represents a 97% increase year over year, which seems enticing relative to its stock valuation -- even more so since the biotech's stock price fell sharply in February. It's now down 50% from its peak. So for those who have been thinking about buying this stock on the dip, now seems like a great time to do so.

This article represents the opinion of the writer, who may disagree with the official recommendation position of a Motley Fool premium advisory service. Were motley! Questioning an investing thesis -- even one of our own -- helps us all think critically about investing and make decisions that help us become smarter, happier, and richer.

See the original post here:
Is It Too Late to Buy Fulgent Genetics Stock? - The Motley Fool

Penn scientists correct genetic blindness with single injection into the eye – Big Think

This article was originally published on our sister site, Freethink.

Researchers at the University of Pennsylvania have reversed a genetic form of blindness in a patient using just one course of antisense oligonucleotide therapy, Clinical OMICS reports.

The therapy, which takes aim at mutant RNA, was injected into the patient's eyes a year ago, in a trial treating Leber congenital amaurosis (LCA). LCA predominantly affects the retina, leaving people with severely impaired vision from birth, according to the NIH.

The trial, held at the Scheie Eye Institute at Penn's Perelman School of Medicine, focused on using antisense oligonucleotide therapy to treat LCA patients with one of the disease's most common mutations.

Antisense oligonucleotide therapy works by altering the RNA, the messenger that carries instructions from your DNA to crank out proteins.

An article in Nature Reviews Neurology describes antisense oligonucleotides as "short, synthetic, single-strand" molecules, which can alter RNA to cause protein creation to be reduced, enhanced, or modified.

In the Penn study, the targeted protein was created by the mutated LCA gene.

The team, led by professors Artur V. Cideciyan and Samuel G. Jacobson, injected an antisense oligonucleotide (called sepofarsen) into the eyes of 11 patients.

In a previous study, according to Clinical OMICS, the team had shown that administering the therapy every three months increased the amount of the proper protein levels in 10 patient's eyes, improving their sight in daytime conditions.

But it's the experience of the eleventh patient that's the subject of their new paper, published in Nature Medicine.

That eleventh patient chose to receive only one course of sepofarsen and turned down the additional doses.

The patient had suffered from poor visual acuity, reduced fields of view, and zero night vision, Clinical OMICS reports, but after one shot, the patient showed remarkable improvement over the course of the next 15 months similar to people who got multiple, regular injections.

"Our results set a new standard of what biological improvements are possible with antisense oligonucleotide therapy in LCA caused by CEP290 mutations," Cideciyan told Clinical OMICS.

Interestingly, the effects of the shot had a delayed onset; while improvement was shown after one month, the gains peaked around three months later, the authors write. That slow uptake was unexpected, and it may hold insights into treating other diseases that impact retinal cell's cilia (aka, those little vibrating hairs), the physical cause of LCA.

Antisense oligonucleotide therapy may be effective because the tiny molecules can slip inside the cell's nucleus, but don't get swept out too quickly, so they can stick around until the job's done.

The therapy's success, and the unexpected success of a single injection, is inspiring other clinical trials.

"There are now, at least in the eye field, a series of clinical trials using antisense oligonucleotides for different genetic defects spawned by the success of the work in CEP290-associated LCA from Drs. Cideciyan and Jacobson," Joan O'Brien, chair of ophthalmology and director of the Scheie Eye Institute, told Clinical OMICS.

Multiple antisense therapies have already been approved by the FDA, particularly for neurological conditions, and have shown success in treating spinal muscular atrophy and Duchenne muscular dystrophy. Per Neurology Genetics, antisense oligonucleotide therapy trials are currently being developed for Huntington's, Parkinson's, and Alzheimer's disease, among others.

And now add genetic blindness to that list.

"This work represents a really exciting direction for RNA antisense therapy. It's been 30 years since there were new drugs using RNA antisense oligonucleotides," Jacobson told Clinical OMICS, "even though everybody realized that there was great promise for these treatments."

Related Articles Around the Web

Read the original:
Penn scientists correct genetic blindness with single injection into the eye - Big Think

These 12 individuals have a rare genetic quirk that prevents ‘self-eating’ in cells – Livescience.com

Scientists uncovered a rare genetic quirk in 12 people, from five different families, that leaves their cells unable to properly recycle their worn-out parts. Such mutations could be lethal, but these individuals have survived and instead live with neurodevelopmental conditions.

Normally, cells dispose of broken internal machinery, dysfunctional proteins, toxins and pathogens through a process called autophagy, which translates from Greek as "self-eating." In the process, cells package all their trash into special bags, called autophagosomes, which then fuse with the cell's garbage disposal, the lysosome. Lysosomes contain digestive enzymes that break down all the trash so that the component parts can be reused by the cell.

In humans, when autophagy goes awry, the subsequent buildup of cellular junk can contribute to various diseases, from neurodegenerative disorders to cancer, according to a 2020 report in the New England Journal of Medicine. This dysfunction can occur when mutations crop up in one of about 20 key genes involved in autophagy.

Related: 5 ways your cells deal with stress

And according to animal studies, if any of these 20 genes are severely impaired or completely disabled, it's usually impossible for the animal to survive. For instance, genetically modified mouse pups born without an essential autophagy gene called ATG7 die within 24 hours of birth, according to various reports. And deleting the same gene from adult mice causes them to die of infection or neurodegeneration within months, according to a 2014 report in the journal Cancer Discovery.

"The studies from mice suggest you can't live without them," meaning the 20 core genes, said senior author Robert Taylor, a professor of mitochondrial pathology at Newcastle University in England. "So, we thought that was the same in humans." But now, Taylor and his team have identified 12 people with defective ATG7 genes that leave them with little to none of the protein that the gene encodes, they reported June 23 in the New England Journal of Medicine (NEJM).

The ATG7 protein jumpstarts the process of building autophagosomes, the cell's special garbage bags, supposedly making it crucial to the entire autophagy process. The fact that the 12 identified individuals have survived, albeit with neurological disorders, "tells us something, that there is something that we don't know yet about autophagy biology that must be compensating for this process in humans," Taylor said.

"An obvious question is what allows these patients to survive so long with greatly diminished autophagic capacity?" said Daniel Klionsky, a cell biologist and professor at the University of Michigan's Life Sciences Institute, who was not involved in the study. If other mechanisms do compensate for the lack of ATG7, the next step is to identify them and determine whether those mechanisms can be manipulated as a form of treatment for such genetic disorders, Klionsky told Live Science in an email.

Since mutations in autophagy-related genes often have lethal consequences, "it is difficult to find an adequate number of patients to have meaningful results" when researching such genetic changes in humans, Klionsky noted. The fact that the team was able to find this number of people with ATG7 mutations "makes the findings more robust," he said.

The researchers found the first two study participants through a clinic that specializes in mitochondrial diseases, as some of their symptoms seemed consistent with mitochondrial conditions, Taylor said. The patients two sisters whose respective ages were 28 and 18 both showed mild-to-moderate learning difficulties, muscle weakness and a lack of coordination, known as ataxia, as well as hearing loss, eye abnormalities and facial dysmorphisms.

Brain scans taken of the elder sister revealed cerebellar hypoplasia, a condition where the cerebellum, located behind the brainstem, fails to develop properly. This region of the brain is critical for coordinating movement. The corpus callosum, a bundle of nerves that connects the two halves of the brain, also appeared unusually thin toward the back of the brain.

In seeing the shared symptoms between the sisters and striking brain scans from the eldest, "We realized that the best way to approach this was genetically, and we took it from there," Taylor said. The team found that both sisters carried recessive mutations in the ATG7 gene that greatly reduced or eliminated its ability to make ATG7 protein.

"And we thought, 'This can't be right,'" given the disastrous effects of ATG7 deficiencies seen in mice, Taylor said. "And yet we were able to show ... that actually, we can't detect ATG7 in the muscle [or] in the cells that we've grown from the first family." Hoping to better understand these counterintuitive results, the team went in search for more individuals with similar ATG7 mutations to the sisters.

Related: Genetics by the numbers: 10 tantalizing tales

"You can't make a compelling case with one family," whereas finding several families with the same combination of genetic mutations and clinical symptoms would strengthen their findings, Taylor said. "Then you start to kind of do the detective work that puts all this together and makes you think, 'We're onto something.'"

So the study's lead author Jack Collier, then a doctoral student in Taylor's lab, used an online tool called GeneMatcher to find the 10 other patients in the researchs cohort of 12. The tool, developed with support from the Baylor-Hopkins Center for Mendelian Genomics, is intended to connect patients, researchers and clinicians with an interest in the same genes.

Through GeneMatcher, the team identified four more families, located in France, Switzerland, Germany and Saudi Arabia. The family members who carried ATG7 mutations ranged from 6 weeks to 71 years in age and showed a similar suite of neurological symptoms, although the severity of the symptoms varied between individuals. In general, the patients showed neurodevelopmental deficits, facial dysmorphisms and ataxia. One or more patients from each family also underwent brain scans, and like the first patient, had underdeveloped cerebellums and thin corpus callosums.

In all but the first two patients, the team found some residual ATG7 protein in sampled muscle cells, as well as in fibroblasts cells in connective tissue that secrete collagen that the team grew from patient samples. And even in the first two sisters, some proteins involved in autophagy still cropped up in their cells, albeit in very low quantities. This hinted that the individuals' genetic mutations didn't completely suppress autophagy.

Looking closer at the mutations, the researchers found that each patient carried slightly different variations of the ATG7 gene, Taylor said. A mutation occurs when one DNA building block is swapped out for another, and the location of this swap along the DNA strand determines how the mutation will change the resulting protein. Using computer models, the team mapped out where all the patients' mutations appeared and found a general theme: The mutations cropped up in highly conserved portions of the DNA sequence, meaning they're usually the same across a wide range of organisms, from yeast to mice to humans.

In fact, the ATG7 gene is highly conserved in all eukaryotic cells the complex cells that make up animals, plants, fungi and protists. Because of this, the team could test how mouse and yeast cells were affected by the mutations seen in the human patients. In lab dish studies, the mutations reduced or eliminated autophagy in both mouse and yeast cells, strengthening the case that the same was happening in the human patients' bodies.

"It is difficult to carry out experiments with humans," Klionsky said. "Certainly, the inclusion of data from mouse and yeast studies makes the results much stronger."

Related: How to speak genetics: A glossary

That said, many questions about these mysterious mutations remain unanswered. Namely, how do people survive when their cells can't "eat themselves" through the usual means?

The cells must be dealing with dysfunctional proteins and broken machinery to some degree, "because accumulations of cellular 'junk' was not observed," Ian Ganley, a principal investigator whose lab studies autophagy at the University of Dundee in Scotland, wrote in a commentary in NEJM. This indicates that some other mechanism fills in for the lack of ATG7-related autophagy, Ganley wrote.

Identifying such mechanisms will be key to developing treatments to syndromes where autophagy is impaired, whether due to a genetic quirk as described in the new study or in neurodegenerative diseases like Alzheimer's, he added. Such treatments could include drugs that boost the activity of these alternative mechanisms, helping cells to rid themselves of junk more efficiently, Taylor said. Another option could be gene therapy, where working copies of faulty autophagy genes are inserted into the genome to replace the mutant versions, Klionsky said.

For now, Taylor and his team plan to run experiments in cells to better understand how the mutations impact specific tissues, such as the brain and muscles, Taylor said. To this end, the team has already begun developing a line of induced pluripotent stem cells those that can mature into any cell in the body from patient samples. With those stem cells, the researchers can create fibroblasts and brain cells to see how the mutation impacts those cells.

"At the moment, we're still trying to understand some of the biology but want to do that in a relevant system," Taylor said. Only then can the team tackle the question of which potential treatments might be able to boost autophagy when it falters.

Originally published on Live Science.

See more here:
These 12 individuals have a rare genetic quirk that prevents 'self-eating' in cells - Livescience.com

4 new weed products to try from Compound Genetics, Papa & Barkley, and more – Weedmaps News

With so many great cannabis brands releasing exciting new products in new markets, it can be hard to keep track of every release. So we're rounding up a few significant releases. This week, we look at releases by Insane, Kal, and more.

Insane just came out with a new strain available at all Dr. Greenthumb dispensaries in California. Stuffed French Toast is a cross between Paris OG and Faceoff OG, and appeals to the wake 'n' bake crowd with a flavor profile of cinnamon, pine, and orange, tasting just like the breakfast staple it was named after.

Available: California

California-based topicals brand Papa & Barkley just announced infused THC capsules to its lineup. The two-ingredient, whole-plant THC Releaf Capsules are made from coconut and cannabis oils and contain 25 to 50 milligrams of THC.

Available: California

Compound Genetics started dropping three strains at the June 26 grand opening of the Cookies Santa Ana location. These strains include Apples and Bananas, Gummiez, dropping on July 1, and Pav, which was made in collaboration with rapper Quavo.

Available: California

Kal will be dropping new flavors on July 2 in its seltzer line in time for summer. Each 12-ounce can of Kal contains 15 milligrams of hemp-derived CBD and 2 grams of sugar. The new flavors include black cherry, ruby red grapefruit, ginger lemonade, and blood orange mango.

Available: Nationwide

High Tales, a video series produced by Monogram, the cannabis line from Jay-Z, just dropped its latest episode featuring rapper Curren$y. The episode shows Curren$y's very own grilled-cheese recipe, along with weed-related stories he's experienced throughout his life and career.

Available: Nationwide

Featured image by Gina Coleman/Weedmaps

Hannah is a Seattle-based writer and editor. Shes worked in the cannabis industry for three years and continues to learn and explore.

More:
4 new weed products to try from Compound Genetics, Papa & Barkley, and more - Weedmaps News