Category Archives: Genetics

Studies reveal link between rotator cuff disease and genetics – News-Medical.net

A new study presented this week at the Association of Academic Physiatrists Annual Meeting in Las Vegas shows rotator cuff disease might be a heritable trait.

Rotator cuff disease is a common disorder that affects 30 to 50 percent of people over the age of 50. The disease often leads to shoulder pain and loss of function. While many think of this as a 'tear' due to an injury or sustained over/misuse, some studies suggest genetics might play a role.

"People are living longer and more active lives, but a large percentage of these people may suffer from rotator cuff disease," explains Lead Investigator in the study, Dominique Dabija, MS, a medical student at Vanderbilt University School of Medicine. "Identifying a genetic link can help early recognition of individuals at higher risk and could warrant application of prevention strategies for this specific population.

To assess if there could be a genetic or familial predisposition to rotator cuff disease, Dabija along with Chan Gao, MD, PhD; Todd L. Edwards, MS, PhD; John Kuhn, MD, MS; and Nitin B. Jain, MD, MSPH, also from Vanderbilt University Medical Center looked through two databases (PubMed and EMBASE) that hold thousands of medical research studies to identify those using the term "rotator cuff." They searched all studies in the databases through March 2016 and narrowed down 251 citations to seven studies that were relevant to their literature review.

"Different studies on similar topics may produce different results depending on the specific methods and populations looked at," explains Dabija. "Our literature review compiles all of these studies to look at the data on a larger scale, and this allows us to identify macro trends as well as research gaps that need to be filled."

Four of the seven studies reviewed by Dabija's team assess whether there is a familial predisposition to rotator cuff disease. One of these found if an individual has a sibling with a rotator cuff tear, he or she is twice as likely to also have a tear and nearly five times more likely to have associated pain and loss of function. This is in comparison to if that individual did not have a sibling with a tear.

Another study reviewed by Dabija's team showed that a significantly higher number of individuals with tears (32.3 percent) had family members with a history of tears or surgery on their rotator cuffs than those without tears (18.3 percent).

A third study found if an individual is diagnosed with a rotator cuff tear before the age of 40, there is a higher likelihood that any of his or her family members immediate or extended will also have a tear. In contrast, if an individual is diagnosed with a rotator cuff tear after the age of 40, only close family members parents, siblings, grandparents, aunts/uncles have a higher likelihood of having a tear. This difference may also be attributed to environmental factors.

The other three studies investigated whether there is a genetic predisposition to rotator cuff disease, and these noted certain patterns of genes were found more often in people with rotator cuff disease when compared to those without rotator cuff disease.

"Although there was a small number of studies in this literature review pointing to a need for more studies on this topic the consensus among all seven studies is rotator cuff disease is a heritable trait," says Dabija. "More large-scale studies need to be performed, and these results can assist in identifying individuals at higher risk of developing a tear and then help them before they have pain."

Go here to see the original:
Studies reveal link between rotator cuff disease and genetics - News-Medical.net

Geisinger Genetics Research Offers Big Health, Economic Impact for Central Pennsylvania – State College News

As Geisinger Health Systems MyCode genetics research initiative grows to more than 132,000 participants, the community is seeing results in more ways than one.

And now the MyCode project is helping serve as a springboard to local participation in a federal initiative that could pump $40 million to $50 million of government funds and bring numerous jobs into central Pennsylvanias economy in the years ahead.

The DNA of the first participants in the study that began in 2007 has been read, and 148 people were found to have gene mutations that put them at greater risk for developing certain diseases or conditions such as cancer, heart disease or dangerously high cholesterol.

One finding of particular note: The research so far suggests that the incidence of familial hypercholesterolemia, a genetic disorder characterized by high cholesterol, is much higher than previously believed. While national data has shown about one in 500 people affected by FH, the Geisinger data is showing about one in 225 to 250, according to Andy Faucett, director of policy and education with Geisingers Genomic Medicine Institute in Danville.

Were starting to be able to provide results that will guide research around the world, Faucett noted.

Findings like this are significant because they can help improve health care by finding ways to diagnose medical conditions earlier or before they appear and also to help find new treatments or medications to manage these diseases, according to Geisinger.

INFORMATION EMPOWERING

For patients, the information can also be empowering, said Miranda Hallquist, genetic counselor with the Genomic Medicine Institute in State College.

Knowing it is related to genetics frequency empowers them to take steps, Hallquist said, adding that were changing peoples health care, giving them information they would not otherwise have gotten as quickly.

The MyCode initiative includes a biobank that stores blood and saliva samples from Geisinger patients who have agreed to participate. Geisinger has already far surpassed its initial goal of 100,000 participants and has set its next goal at 250,000.

Consenters at various Geisinger facilities approach patents to see if they want to participate in the program, and to answer questions they might have. Patients can also sign up at http://www.mygeisinger.org. Participation is relatively simple, generally involving donation of an extra 2 tablespoons of blood at the patients next blood draw. Participants also allow Geisinger to access information in their medical records.

About 90 percent of patients asked have agreed to participate, according to Geisinger.

It surprised me how altruistic people in central Pennsylvania are, Faucett said. He noted that while the program is open to all ages, many participants are older because that age group tends to go to the doctor more.

People are more concerned not so much about the information for themselves, but for their children and grandchildren, he said.

Currently Geisinger has between 1 million and 1.4 million active patients, so we have talked with about 10 percent of the patient population, Faucett said. His goal is that every patient have the opportunity to participate.

GENETIC MARKERS

Of those who provide samples, about 4 percent will hear back because they have genetic markers that make them susceptible to a certain disease. Other participants do not hear back because nothing of concern was found in their DNA.

For those who are found to be at increased risk, meetings are scheduled to discuss the results and appropriate next steps, Hallquist said.

We talk about what the result means for them and their family members, she said.

Part of that education process, Hallquist said, means helping patients sort through the genetics gobbledygook.

For the 96 percent of participants whose genetics dont show increased risks, their data is still imperative to the research project, Hallquist said.

The turnaround time from MyCode samples to results can take a year or more. Hallquist said that while that process should get faster as more staff are added, she emphasized that MyCode is not a substitute for clinical testing for those with health concerns.

PRECISION MEDICINE INITIATIVE

Geisingers experience with the MyCode project helped it become one of four new health care provider organizations selected to participate in the federal Precision Medicine Initiative Cohort Program to help build a nationwide million-person study.

The PMI was launched by then President Barack Obama in 2015 to bring us closer to curing diseases like cancer and diabetes, and to give all of us access to the personalized information we need to keep ourselves and our families healthier.

Ultimately depending on final funding from the National Institutes of Health, the program could bring $40 million to $50 million to Geisinger over the course of five years, Faucett said. These funds will be used to recruit participants, providing multiple jobs throughout the Geisinger footprint. NIH provides funding on a yearly basis, he said.

Participants in the MyCode initiative will be approached about joining the PMI study as well, but it will ask more of patients than MyCode does, Faucett and Hallquist said.

Central Pennsylvania is fertile ground for such studies.

It is a very stable community, with patients willing to participate, Faucett said.

Additionally Geisinger officials noted that its electronic health records system goes back to the late 1990s.

For many families, we have three generations of patient records, Hallquist said. This includes an average of 14 years of health information for MyCode participants.

MyCode has allowed Geisinger to recruit amazing scientists, Faucett said. The types of research we are doing is growing every day.

Faucett sees a future in which physicians will order a patients genetic profile and use it to help guide care over a lifetime.

It was the MyCode project that brought Hallquist to Geisinger.

Precision medicine is the future, she said, while noting that healthy lifestyle choices are still as important as ever. Being able to look at someones DNA to help determine what their risks are, its spectacular that its moving in that direction.

Read more:
Geisinger Genetics Research Offers Big Health, Economic Impact for Central Pennsylvania - State College News

Seattle Genetics, Inc. (NASDAQ:SGEN) earnings reaction history – The Independent Republic

Seattle Genetics, Inc. (NASDAQ:SGEN) is projected to declare fiscal fourth quarter financial results right after the stock markets official close on February 09, 2017. The stock added about 22.4 percent in price since last results when it was at $49.93 a share. Based on the most relevant past-periods data, there is an 60.71 percent probability for this firms share price to go down following next quarterly results. Earnings reaction history tells us that the equity price moved down 17 times out of last 28 reported quarters. It has beaten earnings-per-share estimates 66% of the time in its last 12 earnings reports. It fell short of earnings estimates on 4 occasions, and it has met expectations 0 time.

Heres how traders responded to SGEN earnings announcements over the past few quarters.

Seattle Genetics, Inc. (SGEN) Earnings Surprises & Reaction

Given its history, the average earnings announcement surprise was 2.19 percent over the past four quarters. Back on October 27, 2016, it posted earnings per-share earnings at $-0.23 which beat the consensus $-0.29 projection (positive surprise of20.69%. For the quarter, revenue came in at 106.32M versus consensus estimate of 101.74M. The stock gained 1.84 percent the session following the earnings reports were released, and on 7th day price change was 14.16 percent.

On July 26, 2016, it reported earnings at $-0.23 a share compared with the consensus estimate of $-0.33 per share (positive surprise of 30.3%). Revenue of 95.4M for that quarter was above the $94.13M analysts had expected. The stock climbed 9.62% the day following the earnings announcement, and on 7th day price change was 10.85%.

On April 28, 2016, it recorded $-0.15 a share in earnings which missed the consensus estimate of $-0.11 (negative surprise of -36.36%). Revenue for the quarter was $111.15M while analysts called for revenues to be $116.04M. The stock dropped -4.85% the day following the earnings data was made public, and on 7th day price change was -10.91%.

On February 9, 2016, it announced earnings per share at $-0.18 versus the consensus estimate of $-0.17 per share (negative surprise of -5.88%). That came on revenues of $93.48M for that period. Analysts had expected $88.28M in revenue.

Seattle Genetics, Inc. Earnings Estimates

As Q4 earnings announcement date approaches, Wall Street is expecting earnings per share of $-0.31. The analysts present consensus range is $-0.42-$-0.25 for EPS. The market consensus range for revenue is between $91.86M and $117.07M, with an average of $106.17M.

Seattle Genetics, Inc. (NASDAQ:SGEN) last ended at $61.11, sending the companys market cap near $8.65B. The consensus 12-month price target from analysts covering the stock is $58.79. The share price has declined -18.91% from its top level in 52 weeks and dropped 15.8% this year. It recently traded in a range of $59.57-$61.16 at a volume of 444485 shares. The recent trading ended with the price nearly 4.48 higher for the last 5 trading days, rebounding 134.86% from its 52-week low.

See the original post:
Seattle Genetics, Inc. (NASDAQ:SGEN) earnings reaction history - The Independent Republic

Genetics of Breast and Gynecologic Cancers (PDQ)Health …

Executive Summary

This executive summary reviews the topics covered in this PDQ summary on the genetics of breast and gynecologic cancers, with hyperlinks to detailed sections below that describe the evidence on each topic.

Breast and ovarian cancer are present in several autosomal dominant cancer syndromes, although they are most strongly associated with highly penetrant germline pathogenic variants in BRCA1 and BRCA2. Other genes, such as PALB2, TP53 (associated with Li-Fraumeni syndrome), PTEN (associated with Cowden syndrome), CDH1 (associated with diffuse gastric and lobular breast cancer syndrome), and STK11 (associated with Peutz-Jeghers syndrome), confer a risk to either or both of these cancers with relatively high penetrance.

Inherited endometrial cancer is most commonly associated with LS, a condition caused by inherited pathogenic variants in the highly penetrant mismatch repair genes MLH1, MSH2, MSH6, PMS2, and EPCAM. Colorectal cancer (and, to a lesser extent, ovarian cancer and stomach cancer) is also associated with LS.

Additional genes, such as CHEK2, BRIP1, RAD51, and ATM, are associated with breast and/or gynecologic cancers with moderate penetrance. Genome-wide searches are showing promise in identifying common, low-penetrance susceptibility alleles for many complex diseases, including breast and gynecologic cancers, but the clinical utility of these findings remains uncertain.

Breast cancer screening strategies, including breast magnetic resonance imaging and mammography, are commonly performed in carriers of BRCA pathogenic variants and in individuals at increased risk of breast cancer. Initiation of screening is generally recommended at earlier ages and at more frequent intervals in individuals with an increased risk due to genetics and family history than in the general population. There is evidence to demonstrate that these strategies have utility in early detection of cancer. In contrast, there is currently no evidence to demonstrate that gynecologic cancer screening using cancer antigen 125 testing and transvaginal ultrasound leads to early detection of cancer.

Risk-reducing surgeries, including risk-reducing mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO), have been shown to significantly reduce the risk of developing breast and/or ovarian cancer and improve overall survival in carriers of BRCA1 and BRCA2 pathogenic variants. Chemoprevention strategies, including the use of tamoxifen and oral contraceptives, have also been examined in this population. Tamoxifen use has been shown to reduce the risk of contralateral breast cancer among carriers of BRCA1 and BRCA2 pathogenic variants after treatment for breast cancer, but there are limited data in the primary cancer prevention setting to suggest that it reduces the risk of breast cancer among healthy female carriers of BRCA2 pathogenic variants. The use of oral contraceptives has been associated with a protective effect on the risk of developing ovarian cancer, including in carriers of BRCA1 and BRCA2 pathogenic variants, with no association of increased risk of breast cancer when using formulations developed after 1975.

Psychosocial factors influence decisions about genetic testing for inherited cancer risk and risk-management strategies. Uptake of genetic testing varies widely across studies. Psychological factors that have been associated with testing uptake include cancer-specific distress and perceived risk of developing breast or ovarian cancer. Studies have shown low levels of distress after genetic testing for both carriers and noncarriers, particularly in the longer term. Uptake of RRM and RRSO also varies across studies, and may be influenced by factors such as cancer history, age, family history, recommendations of the health care provider, and pretreatment genetic education and counseling. Patients' communication with their family members about an inherited risk of breast and gynecologic cancer is complex; gender, age, and the degree of relatedness are some elements that affect disclosure of this information. Research is ongoing to better understand and address psychosocial and behavioral issues in high-risk families.

[Note: Many of the medical and scientific terms used in this summary are found in the NCI Dictionary of Genetics Terms. When a linked term is clicked, the definition will appear in a separate window.]

[Note: A concerted effort is being made within the genetics community to shift terminology used to describe genetic variation. The shift is to use the term variant rather than the term mutation to describe a genetic difference that exists between the person or group being studied and the reference sequence. Variants can then be further classified as benign (harmless), likely benign, of uncertain significance, likely pathogenic, or pathogenic (disease causing). Throughout this summary, we will use the term pathogenic variant to describe a disease-causing mutation. Refer to the Cancer Genetics Overview summary for more information about variant classification.]

[Note: Many of the genes and conditions described in this summary are found in the Online Mendelian Inheritance in Man (OMIM) database. When OMIM appears after a gene name or the name of a condition, click on OMIM for a link to more information.]

Among women, breast cancer is the most commonly diagnosed cancer after nonmelanoma skin cancer, and it is the second leading cause of cancer deaths after lung cancer. In 2016, an estimated 249,260 new cases will be diagnosed, and 40,890 deaths from breast cancer will occur.[1] The incidence of breast cancer, particularly for estrogen receptorpositive cancers occurring after age 50 years, is declining and has declined at a faster rate since 2003; this may be temporally related to a decrease in hormone replacement therapy (HRT) after early reports from the Womens Health Initiative (WHI).[2] An estimated 22,280 new cases of ovarian cancer are expected in 2016, with an estimated 14,240 deaths. Ovarian cancer is the fifth most deadly cancer in women.[1] An estimated 60,050 new cases of endometrial cancer are expected in 2016, with an estimated 10,470 deaths.[1] (Refer to the PDQ summaries on Breast Cancer Treatment; Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment; and Endometrial Cancer Treatment for more information about breast, ovarian, and endometrial cancer rates, diagnosis, and management.)

A possible genetic contribution to both breast and ovarian cancer risk is indicated by the increased incidence of these cancers among women with a family history (refer to the Risk Factors for Breast Cancer, Risk Factors for Ovarian Cancer, and Risk Factors for Endometrial Cancer sections below for more information), and by the observation of some families in which multiple family members are affected with breast and/or ovarian cancer, in a pattern compatible with an inheritance of autosomal dominant cancer susceptibility. Formal studies of families (linkage analysis) have subsequently proven the existence of autosomal dominant predispositions to breast and ovarian cancer and have led to the identification of several highly penetrant genes as the cause of inherited cancer risk in many families. (Refer to the PDQ summary Cancer Genetics Overview for more information about linkage analysis.) Pathogenic variants in these genes are rare in the general population and are estimated to account for no more than 5% to 10% of breast and ovarian cancer cases overall. It is likely that other genetic factors contribute to the etiology of some of these cancers.

Refer to the PDQ summary on Breast Cancer Prevention for information about risk factors for breast cancer in the general population.

In cross-sectional studies of adult populations, 5% to 10% of women have a mother or sister with breast cancer, and about twice as many have either a first-degree relative (FDR) or a second-degree relative with breast cancer.[3-6] The risk conferred by a family history of breast cancer has been assessed in case-control and cohort studies, using volunteer and population-based samples, with generally consistent results.[7] In a pooled analysis of 38 studies, the relative risk (RR) of breast cancer conferred by an FDR with breast cancer was 2.1 (95% confidence interval [CI], 2.02.2).[7] Risk increases with the number of affected relatives, age at diagnosis, the occurrence of bilateral or multiple ipsilateral breast cancers in a family member, and the number of affected male relatives.[4,5,7-9] A large population-based study from the Swedish Family Cancer Database confirmed the finding of a significantly increased risk of breast cancer in women who had a mother or a sister with breast cancer. The hazard ratio (HR) for women with a single breast cancer in the family was 1.8 (95% CI, 1.81.9) and was 2.7 (95% CI, 2.62.9) for women with a family history of multiple breast cancers. For women who had multiple breast cancers in the family, with one occurring before age 40 years, the HR was 3.8 (95% CI, 3.14.8). However, the study also found a significant increase in breast cancer risk if the relative was aged 60 years or older, suggesting that breast cancer at any age in the family carries some increase in risk.[9] (Refer to the Penetrance of BRCA pathogenic variants section of this summary for a discussion of familial risk in women from families with BRCA1/BRCA2 pathogenic variants who themselves test negative for the family pathogenic variant.)

Cumulative risk of breast cancer increases with age, with most breast cancers occurring after age 50 years.[10] In women with a genetic susceptibility, breast cancer, and to a lesser degree, ovarian cancer, tends to occur at an earlier age than in sporadic cases.

In general, breast cancer risk increases with early menarche and late menopause and is reduced by early first full-term pregnancy. There may be an increased risk of breast cancer in carriers of BRCA1 and BRCA2 pathogenic variants with pregnancy at a younger age (before age 30 years), with a more significant effect seen for carriers of BRCA1 pathogenic variants.[11-13] Likewise, breast feeding can reduce breast cancer risk in carriers of BRCA1 (but not BRCA2) pathogenic variants.[14] Regarding the effect of pregnancy on breast cancer outcomes, neither diagnosis of breast cancer during pregnancy nor pregnancy after breast cancer seems to be associated with adverse survival outcomes in women who carry a BRCA1 or BRCA2 pathogenic variant.[15] Parity appears to be protective for carriers of BRCA1 and BRCA2 pathogenic variants, with an additional protective effect for live birth before age 40 years.[16]

Reproductive history can also affect the risk of ovarian cancer and endometrial cancer. (Refer to the Reproductive History sections in the Risk Factors for Ovarian Cancer and Risk Factors for Endometrial Cancer sections of this summary for more information.)

Oral contraceptives (OCs) may produce a slight increase in breast cancer risk among long-term users, but this appears to be a short-term effect. In a meta-analysis of data from 54 studies, the risk of breast cancer associated with OC use did not vary in relationship to a family history of breast cancer.[17]

OCs are sometimes recommended for ovarian cancer prevention in carriers of BRCA1 and BRCA2 pathogenic variants. (Refer to the Oral Contraceptives section in the Risk Factors for Ovarian Cancer section of this summary for more information.) Although the data are not entirely consistent, a meta-analysis concluded that there was no significant increased risk of breast cancer with OC use in carriers of BRCA1/BRCA2 pathogenic variants.[18] However, use of OCs formulated before 1975 was associated with an increased risk of breast cancer (summary relative risk [SRR], 1.47; 95% CI, 1.062.04).[18] (Refer to the Reproductive factors section in the Clinical Management of Carriers of BRCA Pathogenic Variants section of this summary for more information.)

Data exist from both observational and randomized clinical trials regarding the association between postmenopausal HRT and breast cancer. A meta-analysis of data from 51 observational studies indicated a RR of breast cancer of 1.35 (95% CI, 1.211.49) for women who had used HRT for 5 or more years after menopause.[19] The WHI (NCT00000611), a randomized controlled trial of about 160,000 postmenopausal women, investigated the risks and benefits of HRT. The estrogen-plus-progestin arm of the study, in which more than 16,000 women were randomly assigned to receive combined HRT or placebo, was halted early because health risks exceeded benefits.[20,21] Adverse outcomes prompting closure included significant increase in both total (245 vs. 185 cases) and invasive (199 vs. 150 cases) breast cancers (RR, 1.24; 95% CI, 1.021.5, P < . 001) and increased risks of coronary heart disease, stroke, and pulmonary embolism. Similar findings were seen in the estrogen-progestin arm of the prospective observational Million Womens Study in the United Kingdom.[22] The risk of breast cancer was not elevated, however, in women randomly assigned to estrogen-only versus placebo in the WHI study (RR, 0.77; 95% CI, 0.591.01). Eligibility for the estrogen-only arm of this study required hysterectomy, and 40% of these patients also had undergone oophorectomy, which potentially could have impacted breast cancer risk.[23]

The association between HRT and breast cancer risk among women with a family history of breast cancer has not been consistent; some studies suggest risk is particularly elevated among women with a family history, while others have not found evidence for an interaction between these factors.[24-28,19] The increased risk of breast cancer associated with HRT use in the large meta-analysis did not differ significantly between subjects with and without a family history.[28] The WHI study has not reported analyses stratified on breast cancer family history, and subjects have not been systematically tested for BRCA1/BRCA2 pathogenic variants.[21] Short-term use of hormones for treatment of menopausal symptoms appears to confer little or no breast cancer risk.[19,29] The effect of HRT on breast cancer risk among carriers of BRCA1 or BRCA2 pathogenic variants has been studied only in the context of bilateral risk-reducing oophorectomy, in which short-term replacement does not appear to reduce the protective effect of oophorectomy on breast cancer risk.[30] (Refer to the Hormone replacement therapy in carriers of BRCA1/BRCA2 pathogenic variants section of this summary for more information.)

Hormone use can also affect the risk of developing endometrial cancer. (Refer to the Hormones section in the Risk Factors for Endometrial Cancer section of this summary for more information.)

Observations in survivors of the atomic bombings of Hiroshima and Nagasaki and in women who have received therapeutic radiation treatments to the chest and upper body document increased breast cancer risk as a result of radiation exposure. The significance of this risk factor in women with a genetic susceptibility to breast cancer is unclear.

Preliminary data suggest that increased sensitivity to radiation could be a cause of cancer susceptibility in carriers of BRCA1 or BRCA2 pathogenic variants,[31-34] and in association with germline ATM and TP53 variants.[35,36]

The possibility that genetic susceptibility to breast cancer occurs via a mechanism of radiation sensitivity raises questions about radiation exposure. It is possible that diagnostic radiation exposure, including mammography, poses more risk in genetically susceptible women than in women of average risk. Therapeutic radiation could also pose carcinogenic risk. A cohort study of carriers of BRCA1 and BRCA2 pathogenic variants treated with breast-conserving therapy, however, showed no evidence of increased radiation sensitivity or sequelae in the breast, lung, or bone marrow of carriers.[37] Conversely, radiation sensitivity could make tumors in women with genetic susceptibility to breast cancer more responsive to radiation treatment. Studies examining the impact of radiation exposure, including, but not limited to, mammography, in carriers of BRCA1 and BRCA2 pathogenic variants have had conflicting results.[38-43] A large European study showed a dose-response relationship of increased risk with total radiation exposure, but this was primarily driven by nonmammographic radiation exposure before age 20 years.[42] Subsequently, no significant association was observed between prior mammography exposure and breast cancer risk in a prospective study of 1,844 BRCA1 carriers and 502 BRCA2 carriers without a breast cancer diagnosis at time of study entry; average follow-up time was 5.3 years.[43] (Refer to the Mammography section in the Clinical Management of Carriers of BRCA Pathogenic Variants section of this summary for more information about radiation.)

The risk of breast cancer increases by approximately 10% for each 10 g of daily alcohol intake (approximately one drink or less) in the general population.[44,45] Prior studies of carriers of BRCA1/BRCA2 pathogenic variants have found no increased risk associated with alcohol consumption.[46,47]

Weight gain and being overweight are commonly recognized risk factors for breast cancer. In general, overweight women are most commonly observed to be at increased risk of postmenopausal breast cancer and at reduced risk of premenopausal breast cancer. Sedentary lifestyle may also be a risk factor.[48] These factors have not been systematically evaluated in women with a positive family history of breast cancer or in carriers of cancer-predisposing pathogenic variants, but one study suggested a reduced risk of cancer associated with exercise among carriers of BRCA1 and BRCA2 pathogenic variants.[49]

Benign breast disease (BBD) is a risk factor for breast cancer, independent of the effects of other major risk factors for breast cancer (age, age at menarche, age at first live birth, and family history of breast cancer).[50] There may also be an association between BBD and family history of breast cancer.[51]

An increased risk of breast cancer has also been demonstrated for women who have increased density of breast tissue as assessed by mammogram,[50,52,53] and breast density is likely to have a genetic component in its etiology.[54-56]

Other risk factors, including those that are only weakly associated with breast cancer and those that have been inconsistently associated with the disease in epidemiologic studies (e.g., cigarette smoking), may be important in women who are in specific genotypically defined subgroups. One study [57] found a reduced risk of breast cancer among carriers of BRCA1/BRCA2 pathogenic variants who smoked, but an expanded follow-up study failed to find an association.[58]

Refer to the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention for information about risk factors for ovarian cancer in the general population.

Although reproductive, demographic, and lifestyle factors affect risk of ovarian cancer, the single greatest ovarian cancer risk factor is a family history of the disease. A large meta-analysis of 15 published studies estimated an odds ratio of 3.1 for the risk of ovarian cancer associated with at least one FDR with ovarian cancer.[59]

Ovarian cancer incidence rises in a linear fashion from age 30 years to age 50 years and continues to increase, though at a slower rate, thereafter. Before age 30 years, the risk of developing epithelial ovarian cancer is remote, even in hereditary cancer families.[60]

Nulliparity is consistently associated with an increased risk of ovarian cancer, including among carriers of BRCA/BRCA2 pathogenic variants, yet a meta-analysis could only identify risk-reduction in women with four or more live births.[13] Risk may also be increased among women who have used fertility drugs, especially those who remain nulligravid.[61,62] Several studies have reported a risk reduction in ovarian cancer after OC pill use in carriers of BRCA1/BRCA2 pathogenic variants;[63-65] a risk reduction has also been shown after tubal ligation in BRCA1 carriers, with a statistically significant decreased risk of 22% to 80% after the procedure.[65,66] On the other hand, evidence is growing that the use of menopausal HRT is associated with an increased risk of ovarian cancer, particularly in long-time users and users of sequential estrogen-progesterone schedules.[67-70]

Bilateral tubal ligation and hysterectomy are associated with reduced ovarian cancer risk,[61,71,72] including in carriers of BRCA1/BRCA2 pathogenic variants.[73] Ovarian cancer risk is reduced more than 90% in women with documented BRCA1 or BRCA2 pathogenic variants who chose risk-reducing salpingo-oophorectomy. In this same population, risk-reducing oophorectomy also resulted in a nearly 50% reduction in the risk of subsequent breast cancer.[74,75] (Refer to the Risk-reducing salpingo-oophorectomy section of this summary for more information about these studies.)

Use of OCs for 4 or more years is associated with an approximately 50% reduction in ovarian cancer risk in the general population.[61,76] A majority of, but not all, studies also support OCs being protective among carriers of BRCA1/BRCA2 pathogenic variants.[66,77-80] A meta-analysis of 18 studies including 13,627 carriers of BRCA pathogenic variants reported a significantly reduced risk of ovarian cancer (SRR, 0.50; 95% CI, 0.330.75) associated with OC use.[18] (Refer to the Oral contraceptives section in the Chemoprevention section of this summary for more information.)

Refer to the PDQ summary on Endometrial Cancer Prevention for information about risk factors for endometrial cancer in the general population.

Although the hyperestrogenic state is the most common predisposing factor for endometrial cancer, family history also plays a significant role in a womans risk for disease. Approximately 3% to 5% of uterine cancer cases are attributable to a hereditary cause,[81] with the main hereditary endometrial cancer syndrome being Lynch syndrome (LS), an autosomal dominant genetic condition with a population prevalence of 1 in 300 to 1 in 1,000 individuals.[82,83] (Refer to the LS section in the PDQ summary on Genetics of Colorectal Cancer for more information.)

Age is an important risk factor for endometrial cancer. Most women with endometrial cancer are diagnosed after menopause. Only 15% of women are diagnosed with endometrial cancer before age 50 years, and fewer than 5% are diagnosed before age 40 years.[84] Women with LS tend to develop endometrial cancer at an earlier age, with the median age at diagnosis of 48 years.[85]

Reproductive factors such as multiparity, late menarche, and early menopause decrease the risk of endometrial cancer because of the lower cumulative exposure to estrogen and the higher relative exposure to progesterone.[86,87]

Hormonal factors that increase the risk of type I endometrial cancer are better understood. All endometrial cancers share a predominance of estrogen relative to progesterone. Prolonged exposure to estrogen or unopposed estrogen increases the risk of endometrial cancer. Endogenous exposure to estrogen can result from obesity, polycystic ovary syndrome (PCOS), and nulliparity, while exogenous estrogen can result from taking unopposed estrogen or tamoxifen. Unopposed estrogen increases the risk of developing endometrial cancer by twofold to twentyfold, proportional to the duration of use.[88,89] Tamoxifen, a selective estrogen receptor modulator, acts as an estrogen agonist on the endometrium while acting as an estrogen antagonist in breast tissue, and increases the risk of endometrial cancer.[90] In contrast, oral contraceptives, the levonorgestrel-releasing intrauterine system, and combination estrogen-progesterone hormone replacement therapy all reduce the risk of endometrial cancer through the antiproliferative effect of progesterone acting on the endometrium.[91-94]

Autosomal dominant inheritance of breast and gynecologic cancers is characterized by transmission of cancer predisposition from generation to generation, through either the mothers or the fathers side of the family, with the following characteristics:

Breast and ovarian cancer are components of several autosomal dominant cancer syndromes. The syndromes most strongly associated with both cancers are the syndromes associated with BRCA1 or BRCA2 pathogenic variants. Breast cancer is also a common feature of Li-Fraumeni syndrome due to TP53 pathogenic variants and of Cowden syndrome due to PTEN pathogenic variants.[95] Other genetic syndromes that may include breast cancer as an associated feature include heterozygous carriers of the ataxia telangiectasia gene and Peutz-Jeghers syndrome. Ovarian cancer has also been associated with LS, basal cell nevus (Gorlin) syndrome (OMIM), and multiple endocrine neoplasia type 1 (OMIM).[95] LS is mainly associated with colorectal cancer and endometrial cancer, although several studies have demonstrated that patients with LS are also at risk of developing transitional cell carcinoma of the ureters and renal pelvis; cancers of the stomach, small intestine, liver and biliary tract, brain, breast, prostate, and adrenal cortex; and sebaceous skin tumors (Muir-Torre syndrome).[96-102]

Germline pathogenic variants in the genes responsible for these autosomal dominant cancer syndromes produce different clinical phenotypes of characteristic malignancies and, in some instances, associated nonmalignant abnormalities.

The family characteristics that suggest hereditary cancer predisposition include the following:

Figure 1 and Figure 2 depict some of the classic inheritance features of a BRCA1 and BRCA2 pathogenic variant, respectively. Figure 3 depicts a classic family with LS. (Refer to the Standard Pedigree Nomenclature figure in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for definitions of the standard symbols used in these pedigrees.)

Figure 1. BRCA1 pedigree. This pedigree shows some of the classic features of a family with a BRCA1 pathogenic variant across three generations, including affected family members with breast cancer or ovarian cancer and a young age at onset. BRCA1 families may exhibit some or all of these features. As an autosomal dominant syndrome, a BRCA1 pathogenic variant can be transmitted through maternal or paternal lineages, as depicted in the figure.

Figure 2. BRCA2 pedigree. This pedigree shows some of the classic features of a family with a BRCA2 pathogenic variant across three generations, including affected family members with breast (including male breast cancer), ovarian, pancreatic, or prostate cancers and a relatively young age at onset. BRCA2 families may exhibit some or all of these features. As an autosomal dominant syndrome, a BRCA2 pathogenic variant can be transmitted through maternal or paternal lineages, as depicted in the figure.

Figure 3. Lynch syndrome pedigree. This pedigree shows some of the classic features of a family with Lynch syndrome, including affected family members with colon cancer or endometrial cancer and a younger age at onset in some individuals. Lynch syndrome families may exhibit some or all of these features. Lynch syndrome families may also include individuals with other gastrointestinal, gynecologic, and genitourinary cancers, or other extracolonic cancers. As an autosomal dominant syndrome, Lynch syndrome can be transmitted through maternal or paternal lineages, as depicted in the figure.

There are no pathognomonic features distinguishing breast and ovarian cancers occurring in carriers of BRCA1 or BRCA2 pathogenic variants from those occurring in noncarriers. Breast cancers occurring in carriers of BRCA1 pathogenic variants are more likely to be ER-negative, progesterone receptornegative, HER2/neu receptornegative (i.e., triple-negative breast cancers), and have a basal phenotype. BRCA1-associated ovarian cancers are more likely to be high-grade and of serous histopathology. (Refer to the Pathology of breast cancer and Pathology of ovarian cancer sections of this summary for more information.)

Some pathologic features distinguish carriers of LS-associated pathogenic variants from noncarriers. The hallmark feature of endometrial cancers occurring in LS is mismatch repair (MMR) defects, including the presence of microsatellite instability (MSI), and the absence of specific MMR proteins. In addition to these molecular changes, there are also histologic changes including tumor-infiltrating lymphocytes, peritumoral lymphocytes, undifferentiated tumor histology, lower uterine segment origin, and synchronous tumors.

The accuracy and completeness of family histories must be taken into account when they are used to assess risk. A reported family history may be erroneous, or a person may be unaware of relatives affected with cancer. In addition, small family sizes and premature deaths may limit the information obtained from a family history. Breast or ovarian cancer on the paternal side of the family usually involves more distant relatives than does breast or ovarian cancer on the maternal side, so information may be more difficult to obtain. When self-reported information is compared with independently verified cases, the sensitivity of a history of breast cancer is relatively high, at 83% to 97%, but lower for ovarian cancer, at 60%.[103,104] Additional limitations of relying on family histories include adoption; families with a small number of women; limited access to family history information; and incidental removal of the uterus, ovaries, and/or fallopian tubes for noncancer indications. Family histories will evolve, therefore it is important to update family histories from both parents over time. (Refer to the Accuracy of the family history section in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information.)

Models to predict an individuals lifetime risk of developing breast and/or gynecologic cancer are available.[105-108] In addition, models exist to predict an individuals likelihood of having a pathogenic variant in BRCA1, BRCA2, or one of the MMR genes associated with LS. (Refer to the Models for prediction of the likelihood of a BRCA1 or BRCA2 pathogenic variant section of this summary for more information about some of these models.) Not all models can be appropriately applied to all patients. Each model is appropriate only when the patients characteristics and family history are similar to those of the study population on which the model was based. Different models may provide widely varying risk estimates for the same clinical scenario, and the validation of these estimates has not been performed for many models.[106,109,110]

In general, breast cancer risk assessment models are designed for two types of populations: 1) women without a pathogenic variant or strong family history of breast or ovarian cancer; and 2) women at higher risk because of a personal or family history of breast cancer or ovarian cancer.[110] Models designed for women of the first type (e.g., the Gail model, which is the basis for the Breast Cancer Risk Assessment Tool [BCRAT]) [111], and the Colditz and Rosner model [112]) require only limited information about family history (e.g., number of first-degree relatives with breast cancer). Models designed for women at higher risk require more detailed information about personal and family cancer history of breast and ovarian cancers, including ages at onset of cancer and/or carrier status of specific breast cancer-susceptibility alleles. The genetic factors used by the latter models differ, with some assuming one risk locus (e.g., the Claus model [113]), others assuming two loci (e.g., the International Breast Cancer Intervention Study [IBIS] model [114] and the BRCAPRO model [115]), and still others assuming an additional polygenic component in addition to multiple loci (e.g., the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm [BOADICEA] model [116-118]). The models also differ in whether they include information about nongenetic risk factors. Three models (Gail/BCRAT, Pfeiffer,[108] and IBIS) include nongenetic risk factors but differ in the risk factors they include (e.g., the Pfeiffer model includes alcohol consumption, whereas the Gail/BCRAT does not). These models have limited ability to discriminate between individuals who are affected and those who are unaffected with cancer; a model with high discrimination would be close to 1, and a model with little discrimination would be close to 0.5; the discrimination of the models currently ranges between 0.56 and 0.63).[119] The existing models generally are more accurate in prospective studies that have assessed how well they predict future cancers.[110,120-122]

In the United States, BRCAPRO, the Claus model,[113,123] and the Gail/BCRAT [111] are widely used in clinical counseling. Risk estimates derived from the models differ for an individual patient. Several other models that include more detailed family history information are also in use and are discussed below.

The Gail model is the basis for the BCRAT, a computer program available from the National Cancer Institute (NCI) by calling the Cancer Information Service at 1-800-4-CANCER (1-800-422-6237). This version of the Gail model estimates only the risk of invasive breast cancer. The Gail/BCRAT model has been found to be reasonably accurate at predicting breast cancer risk in large groups of white women who undergo annual screening mammography; however, reliability varies depending on the cohort studied.[124-129] Risk can be overestimated in the following populations:

The Gail/BCRAT model is valid for women aged 35 years and older. The model was primarily developed for white women.[128] Extensions of the Gail model for African American women have been subsequently developed to calibrate risk estimates using data from more than 1,600 African American women with invasive breast cancer and more than 1,600 controls.[130] Additionally, extensions of the Gail model have incorporated high-risk single nucleotide polymorphisms and pathogenic variants; however, no software exists to calculate risk in these extended models.[131,132] Other risk assessment models incorporating breast density have been developed but are not ready for clinical use.[133,134]

Generally, the Gail/BCRAT model should not be the sole model used for families with one or more of the following characteristics:

Commonly used models that incorporate family history include the IBIS, BOADICEA, and BRCAPRO models. The IBIS/Tyrer-Cuzick model incorporates both genetic and nongenetic factors.[114] A three-generation pedigree is used to estimate the likelihood that an individual carries either a BRCA1/BRCA2 pathogenic variant or a hypothetical low-penetrance gene. In addition, the model incorporates personal risk factors such as parity, body mass index (BMI); height; and age at menarche, first live birth, menopause, and HRT use. Both genetic and nongenetic factors are combined to develop a risk estimate. The BOADICEA model examines family history to estimate breast cancer risk and also incorporates both BRCA1/BRCA2 and non-BRCA1/BRCA2 genetic risk factors.[117] The most important difference between BOADICEA and the other models using information on BRCA1/BRCA2 is that BOADICEA assumes an additional polygenic component in addition to multiple loci,[116-118] which is more in line with what is known about the underlying genetics of breast cancer. However, the discrimination and calibration for these models differ significantly when compared in independent samples;[120] the IBIS and BOADICEA models are more comparable when estimating risk over a shorter fixed time horizon (e.g., 10 years),[120] than when estimating remaining lifetime risk. As all risk assessment models for cancers are typically validated over a shorter time horizon (e.g., 5 or 10 years), fixed time horizon estimates rather than remaining lifetime risk may be more accurate and useful measures to convey in a clinical setting.

In addition, readily available models that provide information about an individual womans risk in relation to the population-level risk depending on her risk factors may be useful in a clinical setting (e.g., Your Disease Risk). Although this tool was developed using information about average-risk women and does not calculate absolute risk estimates, it still may be useful when counseling women about prevention. Risk assessment models are being developed and validated in large cohorts to integrate genetic and nongenetic data, breast density, and other biomarkers.

Two risk predictions models have been developed for ovarian cancer.[107,108] The Rosner model [107] included age at menopause, age at menarche, oral contraception use, and tubal ligation; the concordance statistic was 0.60 (0.570.62). The Pfeiffer model [108] included oral contraceptive use, menopausal hormone therapy use, and family history of breast cancer or ovarian cancer, with a similar discriminatory power of 0.59 (0.560.62). Although both models were well calibrated, their modest discriminatory power limited their screening potential.

The Pfeiffer model has been used to predict endometrial cancer risk in the general population.[108] For endometrial cancer, the relative risk model included BMI, menopausal hormone therapy use, menopausal status, age at menopause, smoking status, and oral contraceptive pill use. The discriminatory power of the model was 0.68 (0.660.70); it overestimated observed endometrial cancers in most subgroups but underestimated disease in women with the highest BMI category, in premenopausal women, and in women taking menopausal hormone therapy for 10 years or more.

In contrast, MMRpredict, PREMM1,2,6, and MMRpro are three quantitative predictive models used to identify individuals who may potentially have LS.[135-137] MMRpredict incorporates only colorectal cancer patients but does include MSI and immunohistochemistry (IHC) tumor testing results. PREMM1,2,6 accounts for other LS-associated tumors but does not include tumor testing results. MMRpro incorporates tumor testing and germline testing results, but is more time intensive because it includes affected and unaffected individuals in the risk-quantification process. All three predictive models are comparable to the traditional Amsterdam and Bethesda criteria in identifying individuals with colorectal cancer who carry MMR gene pathogenic variants.[138] However, because these models were developed and validated in colorectal cancer patients, the discriminative abilities of these models to identify LS are lower among individuals with endometrial cancer than among those with colon cancer.[139] In fact, the sensitivity and specificity of MSI and IHC in identifying carriers of pathogenic variants are considerably higher than the prediction models and support the use of molecular tumor testing to screen for LS in women with endometrial cancer.

Table 1 summarizes salient aspects of breast and gynecologic cancer risk assessment models that are commonly used in the clinical setting. These models differ by the extent of family history included, whether nongenetic risk factors are included, and whether carrier status and polygenic risk are included (inputs to the models). The models also differ in the type of risk estimates that are generated (outputs of the models). These factors may be relevant in choosing the model that best applies to a particular individual.

The proportion of individuals carrying a pathogenic variant who will manifest a certain disease is referred to as penetrance. In general, common genetic variants that are associated with cancer susceptibility have a lower penetrance than rare genetic variants. This is depicted in Figure 4. For adult-onset diseases, penetrance is usually described by the individual carrier's age, sex, and organ site. For example, the penetrance for breast cancer in female carriers of BRCA1 pathogenic variants is often quoted by age 50 years and by age 70 years. Of the numerous methods for estimating penetrance, none are without potential biases, and determining an individual carrier's risk of cancer involves some level of imprecision.

Figure 4. Genetic architecture of cancer risk. This graph depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants, such as single-nucleotide polymorphisms identified in genome-wide association studies, and a higher relative risk associated with rare, high-penetrance genetic variants, such as pathogenic variants in the BRCA1/BRCA2 genes associated with hereditary breast and ovarian cancer and the mismatch repair genes associated with Lynch syndrome.

Throughout this summary, we discuss studies that report on relative and absolute risks. These are two important but different concepts. Relative risk (RR) refers to an estimate of risk relative to another group (e.g., risk of an outcome like breast cancer for women who are exposed to a risk factor RELATIVE to the risk of breast cancer for women who are unexposed to the same risk factor). RR measures that are greater than 1 mean that the risk for those captured in the numerator (i.e., the exposed) is higher than the risk for those captured in the denominator (i.e., the unexposed). RR measures that are less than 1 mean that the risk for those captured in the numerator (i.e., the exposed) is lower than the risk for those captured in the denominator (i.e., the unexposed). Measures with similar relative interpretations include the odds ratio (OR), hazard ratio (HR), and risk ratio.

Absolute risk measures take into account the number of people who have a particular outcome, the number of people in a population who could have the outcome, and person-time (the period of time during which an individual was at risk of having the outcome), and reflect the absolute burden of an outcome in a population. Absolute measures include risks and rates and can be expressed over a specific time frame (e.g., 1 year, 5 years) or overall lifetime. Cumulative risk is a measure of risk that occurs over a defined time period. For example, overall lifetime risk is a type of cumulative risk that is usually calculated on the basis of a given life expectancy (e.g., 80 or 90 years). Cumulative risk can also be presented over other time frames (e.g., up to age 50 years).

Large relative risk measures do not mean that there will be large effects in the actual number of individuals at a population level because the disease outcome may be quite rare. For example, the relative risk for smoking is much higher for lung cancer than for heart disease, but the absolute difference between smokers and nonsmokers is greater for heart disease, the more-common outcome, than for lung cancer, the more-rare outcome.

Therefore, in evaluating the effect of exposures and biological markers on disease prevention across the continuum, it is important to recognize the differences between relative and absolute effects in weighing the overall impact of a given risk factor. For example, the magnitude is in the range of 30% (e.g., ORs or RRs of 1.3) for many breast cancer risk factors, which means that women with a risk factor (e.g., alcohol consumption, late age at first birth, oral contraceptive use, postmenopausal body size) have a 30% relative increase in breast cancer in comparison with what they would have if they did not have that risk factor. But the absolute increase in risk is based on the underlying absolute risk of disease. Figure 5 and Table 2 show the impact of a relative risk factor in the range of 1.3 on absolute risk. (Refer to the Standard Pedigree Nomenclature figure in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for definitions of the standard symbols used in these pedigrees.) As shown, women with a family history of breast cancer have a much higher benefit from risk factor reduction on an absolute scale.[1]

Figure 5. These five pedigrees depict probands with varying degrees of family history. Table 2 accompanies this figure.

With the increasing use of multigene panel tests (see below), a framework for cancer risk management among individuals with pathogenic variants detected in novel genes has been described [2] that incorporates data on age-specific, lifetime, and absolute cancer risks. The framework suggests initiating screening in these individuals at the age when their 5-year cancer risk approaches that at which screening is routinely initiated for women in the general population (approximately 1% for breast cancer in the United States). As a result, the age at which to begin screening will vary depending on the gene.

Since the availability of next-generation sequencing and the Supreme Court of the United States ruling that human genes cannot be patented, several clinical laboratories now offer genetic testing through multigene panels at a cost comparable to single-gene testing. Even testing for BRCA1 and BRCA2 is a limited panel test of two genes. Approximately 25% of all ovarian/fallopian tube/peritoneal cancers are due to a heritable genetic condition. Of these, about one-quarter (6% of all ovarian/fallopian tube/peritoneal cancers) are caused by genes other than BRCA1 and BRCA2, including many genes associated with the Fanconi anemia pathway or otherwise involved with homologous recombination.[1] In a population of ovarian cancer patients who test negative for BRCA1 and BRCA2 pathogenic variants, multigene panel testing can reveal actionable pathogenic variants.[2,3] In an unselected population of breast cancer patients, the prevalence of BRCA1 and BRCA2 pathogenic variants was 6.1%, while the prevalence of pathogenic variants in other breast/ovarian cancerpredisposing genes was 4.6%.[4] A caveat is the possible finding of a variant of uncertain significance, where the clinical significance remains unknown. Many centers now offer a multigene panel test instead of just BRCA1 and BRCA2 testing if there is a concerning family history of syndromes other than hereditary breast and ovarian cancer, or more importantly, to gain as much genetic information as possible with one test, particularly if there may be insurance limitations.

(Refer to the Multigene [panel] testing section in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information about multigene testing, including genetic education and counseling considerations and research examining the use of multigene testing.)

Epidemiologic studies have clearly established the role of family history as an important risk factor for both breast and ovarian cancer. After gender and age, a positive family history is the strongest known predictive risk factor for breast cancer. However, it has long been recognized that in some families, there is hereditary breast cancer, which is characterized by an early age of onset, bilaterality, and the presence of breast cancer in multiple generations in an apparent autosomal dominant pattern of transmission (through either the maternal or the paternal lineage), sometimes including tumors of other organs, particularly the ovary and prostate gland.[1,2] It is now known that some of these cancer families can be explained by specific pathogenic variants in single cancer susceptibility genes. The isolation of several of these genes, which when altered are associated with a significantly increased risk of breast/ovarian cancer, makes it possible to identify individuals at risk. Although such cancer susceptibility genes are very important, highly penetrant germline pathogenic variants are estimated to account for only 5% to 10% of breast cancers overall.

A 1988 study reported the first quantitative evidence that breast cancer segregated as an autosomal dominant trait in some families.[3] The search for genes associated with hereditary susceptibility to breast cancer has been facilitated by studies of large kindreds with multiple affected individuals and has led to the identification of several susceptibility genes, including BRCA1, BRCA2, TP53, PTEN/MMAC1, and STK11. Other genes, such as the mismatch repair genes MLH1, MSH2, MSH6, and PMS2, have been associated with an increased risk of ovarian cancer, but have not been consistently associated with breast cancer.

In 1990, a susceptibility gene for breast cancer was mapped by genetic linkage to the long arm of chromosome 17, in the interval 17q12-21.[4] The linkage between breast cancer and genetic markers on chromosome 17q was soon confirmed by others, and evidence for the coincident transmission of both breast and ovarian cancer susceptibility in linked families was observed.[5] The BRCA1 gene (OMIM) was subsequently identified by positional cloning methods and has been found to contain 24 exons that encode a protein of 1,863 amino acids. Germline pathogenic variants in BRCA1 are associated with early-onset breast cancer, ovarian cancer, and fallopian tube cancer. (Refer to the Penetrance of BRCA pathogenic variants section of this summary for more information.) Male breast cancer, pancreatic cancer, testicular cancer, and early-onset prostate cancer may also be associated with pathogenic variants in BRCA1;[6-9] however, male breast cancer, pancreatic cancer, and prostate cancer are more strongly associated with pathogenic variants in BRCA2.

A second breast cancer susceptibility gene, BRCA2, was localized to the long arm of chromosome 13 through linkage studies of 15 families with multiple cases of breast cancer that were not linked to BRCA1. Pathogenic variants in BRCA2 (OMIM) are associated with multiple cases of breast cancer in families, and are also associated with male breast cancer, ovarian cancer, prostate cancer, melanoma, and pancreatic cancer.[8-14] (Refer to the Penetrance of BRCA pathogenic variants section of this summary for more information.) BRCA2 is a large gene with 27 exons that encode a protein of 3,418 amino acids.[15] While not homologous genes, both BRCA1 and BRCA2 have an unusually large exon 11 and translational start sites in exon 2. Like BRCA1, BRCA2 appears to behave like a tumor suppressor gene. In tumors associated with both BRCA1 and BRCA2 pathogenic variants, there is often loss of the wild-type allele.

Pathogenic variants in BRCA1 and BRCA2 appear to be responsible for disease in 45% of families with multiple cases of breast cancer only and in up to 90% of families with both breast and ovarian cancer.[16]

Most BRCA1 and BRCA2 pathogenic variants are predicted to produce a truncated protein product, and thus loss of protein function, although some missense pathogenic variants cause loss of function without truncation. Because inherited breast/ovarian cancer is an autosomal dominant condition, persons with a BRCA1 or BRCA2 pathogenic variant on one copy of chromosome 17 or 13 also carry a normal allele on the other paired chromosome. In most breast and ovarian cancers that have been studied from carriers of pathogenic variants, deletion of the normal allele results in loss of all function, leading to the classification of BRCA1 and BRCA2 as tumor suppressor genes. In addition to, and as part of, their roles as tumor suppressor genes, BRCA1 and BRCA2 are involved in myriad functions within cells, including homologous DNA repair, genomic stability, transcriptional regulation, protein ubiquitination, chromatin remodeling, and cell cycle control.[17,18]

Nearly 2,000 distinct variants and sequence variations in BRCA1 and BRCA2 have already been described.[19] Approximately 1 in 400 to 800 individuals in the general population may carry a germline pathogenic variant in BRCA1 or BRCA2.[20,21] The variants that have been associated with increased risk of cancer result in missing or nonfunctional proteins, supporting the hypothesis that BRCA1 and BRCA2 are tumor suppressor genes. While a small number of these pathogenic variants have been found repeatedly in unrelated families, most have not been reported in more than a few families.

Variant-screening methods vary in their sensitivity. Methods widely used in research laboratories, such as single-stranded conformational polymorphism analysis and conformation-sensitive gel electrophoresis, miss nearly a third of the variants that are detected by DNA sequencing.[22] In addition, large genomic alterations such as translocations, inversions, or large deletions or insertions are missed by most of the techniques, including direct DNA sequencing, but testing for these is commercially available. Such rearrangements are believed to be responsible for 12% to 18% of BRCA1 inactivating variants but are less frequently seen in BRCA2 and in individuals of Ashkenazi Jewish (AJ) descent.[23-29] Furthermore, studies have suggested that these rearrangements may be more frequently seen in Hispanic and Caribbean populations.[27,29,30]

Germline pathogenic variants in the BRCA1/BRCA2 genes are associated with an approximately 60% lifetime risk of breast cancer and a 15% to 40% lifetime risk of ovarian cancer. There are no definitive functional tests for BRCA1 or BRCA2; therefore, the classification of nucleotide changes to predict their functional impact as deleterious or benign relies on imperfect data. The majority of accepted pathogenic variants result in protein truncation and/or loss of important functional domains. However, 10% to 15% of all individuals undergoing genetic testing with full sequencing of BRCA1 and BRCA2 will not have a clearly pathogenic variant detected but will have a variant of uncertain (or unknown) significance (VUS). VUS may cause substantial challenges in counseling, particularly in terms of cancer risk estimates and risk management. Clinical management of such patients needs to be highly individualized and must take into consideration factors such as the patients personal and family cancer history, in addition to sources of information to help characterize the VUS as benign or deleterious. Thus an improved classification and reporting system may be of clinical utility.[31]

A comprehensive analysis of 7,461 consecutive full gene sequence analyses performed by Myriad Genetic Laboratories, Inc., described the frequency of VUS over a 3-year period.[32] Among subjects who had no clearly pathogenic variant, 13% had VUS defined as missense mutations and mutations that occur in analyzed intronic regions whose clinical significance has not yet been determined, chain-terminating mutations that truncate BRCA1 and BRCA2 distal to amino acid positions 1853 and 3308, respectively, and mutations that eliminate the normal stop codons for these proteins. The classification of a sequence variant as a VUS is a moving target. An additional 6.8% of subjects with no clear pathogenic variants had sequence alterations that were once considered VUS but were reclassified as a polymorphism, or occasionally as a pathogenic variant.

The frequency of VUS varies by ethnicity within the U.S. population. African Americans appear to have the highest rate of VUS.[33] In a 2009 study of data from Myriad, 16.5% of individuals of African ancestry had VUS, the highest rate among all ethnicities. The frequency of VUS in Asian, Middle Eastern, and Hispanic populations clusters between 10% and 14%, although these numbers are based on limited sample sizes. Over time, the rate of changes classified as VUS has decreased in all ethnicities, largely the result of improved variant classification algorithms.[34] VUS continue to be reclassified as additional information is curated and interpreted.[35,36] Such information may impact the continuing care of affected individuals.

A number of methods for discriminating deleterious from neutral VUS exist and others are in development [37-40] including integrated methods (see below).[41] Interpretation of VUS is greatly aided by efforts to track VUS in the family to determine if there is cosegregation of the VUS with the cancer in the family. In general, a VUS observed in individuals who also have a pathogenic variant, especially when the same VUS has been identified in conjunction with different pathogenic variants, is less likely to be in itself deleterious, although there are rare exceptions. As an adjunct to the clinical information, models to interpret VUS have been developed, based on sequence conservation, biochemical properties of amino acid changes,[37,42-46] incorporation of information on pathologic characteristics of BRCA1- and BRCA2-related tumors (e.g., BRCA1-related breast cancers are usually estrogen receptor [ER]negative),[47] and functional studies to measure the influence of specific sequence variations on the activity of BRCA1 or BRCA2 proteins.[48,49] When attempting to interpret a VUS, all available information should be examined.

Statistics regarding the percentage of individuals found to be carriers of BRCA pathogenic variants among samples of women and men with a variety of personal cancer histories regardless of family history are provided below. These data can help determine who might best benefit from a referral for cancer genetic counseling and consideration of genetic testing but cannot replace a personalized risk assessment, which might indicate a higher or lower pathogenic variant likelihood based on additional personal and family history characteristics.

In some cases, the same pathogenic variant has been found in multiple apparently unrelated families. This observation is consistent with a founder effect, wherein a pathogenic variant identified in a contemporary population can be traced to a small group of founders isolated by geographic, cultural, or other factors. Most notably, two specific BRCA1 pathogenic variants (185delAG and 5382insC) and a BRCA2 pathogenic variant (6174delT) have been reported to be common in AJs. However, other founder pathogenic variants have been identified in African Americans and Hispanics.[30,50,51] The presence of these founder pathogenic variants has practical implications for genetic testing. Many laboratories offer directed testing specifically for ethnic-specific alleles. This greatly simplifies the technical aspects of the test but is not without limitations. For example, it is estimated that up to 15% of BRCA1 and BRCA2 pathogenic variants that occur among Ashkenazim are nonfounder pathogenic variants.[32]

Among the general population, the likelihood of having any BRCA variant is as follows:

Among AJ individuals, the likelihood of having any BRCA variant is as follows:

Two large U.S. population-based studies of breast cancer patients younger than age 65 years examined the prevalence of BRCA1 [55,70] and BRCA2 [55] pathogenic variants in various ethnic groups. The prevalence of BRCA1 pathogenic variants in breast cancer patients by ethnic group was 3.5% in Hispanics, 1.3% to 1.4% in African Americans, 0.5% in Asian Americans, 2.2% to 2.9% in non-AJ whites, and 8.3% to 10.2% in AJ individuals.[55,70] The prevalence of BRCA2 pathogenic variants by ethnic group was 2.6% in African Americans and 2.1% in whites.[55]

A study of Hispanic patients with a personal or family history of breast cancer and/or ovarian cancer, who were enrolled through multiple clinics in the southwestern United States, examined the prevalence of BRCA1 and BRCA2 pathogenic variants. BRCA pathogenic variants were identified in 189 of 746 patients (25%) (124 BRCA1, 65 BRCA2);[71] 21 of the 189 (11%) BRCA pathogenic variants identified were large rearrangements, of which 13 (62%) were the BRCA1 exon 912 deletion. An unselected cohort of 810 women of Mexican ancestry with breast cancer were tested; 4.3% had a BRCA pathogenic variant. Eight of the 35 pathogenic variants identified also were the BRCA1 exon 912 deletion.[72] In another population-based cohort of 492 Hispanic women with breast cancer, the BRCA1 exon 912 deletion was found in three patients, suggesting that this variant may be a Mexican founder pathogenic variant and may represent 10% to 12% of all BRCA1 pathogenic variants in similar clinic- and population-based cohorts in the United States. Within the clinic-based cohort, there were nine recurrent pathogenic variants, which accounted for 53% of all variants observed in this cohort, suggesting the existence of additional founder pathogenic variants in this population.

A retrospective review of 29 AJ patients with primary fallopian tube tumors identified germline BRCA pathogenic variants in 17%.[69] Another study of 108 women with fallopian tube cancer identified pathogenic variants in 55.6% of the Jewish women and 26.4% of non-Jewish women (30.6% overall).[73] Estimates of the frequency of fallopian tube cancer in carriers of BRCA pathogenic variants are limited by the lack of precision in the assignment of site of origin for high-grade, metastatic, serous carcinomas at initial presentation.[6,69,73,74]

Population screening has identified carriers in a number of AJ populations who would not have met criteria for family-based testing.[62,75-77] This could potentially expand the number of individuals who could benefit from preventive strategies. Because the detection rate is highly dependent on the prevalence of pathogenic variants in a population, it is not clear how applicable this approach would be for other populations, including other founder pathogenic variant populations. Another unanswered question is whether adequate genetic counseling can be provided for whole populations.

Several studies have assessed the frequency of BRCA1 or BRCA2 pathogenic variants in women with breast or ovarian cancer.[55,56,70,78-86] Personal characteristics associated with an increased likelihood of a BRCA1 and/or BRCA2 pathogenic variant include the following:

Family history characteristics associated with an increased likelihood of carrying a BRCA1 and/or BRCA2 pathogenic variant include the following:

Several professional organizations and expert panels, including the American Society of Clinical Oncology,[91] the National Comprehensive Cancer Network (NCCN),[92] the American Society of Human Genetics,[93] the American College of Medical Genetics and Genomics,[94] the National Society of Genetic Counselors,[94] the U.S. Preventive Services Task Force,[95] and the Society of Gynecologic Oncologists,[96] have developed clinical criteria and practice guidelines that can be helpful to health care providers in identifying individuals who may have a BRCA1 or BRCA2 pathogenic variant.

Many models have been developed to predict the probability of identifying germline BRCA1/BRCA2 pathogenic variants in individuals or families. These models include those using logistic regression,[32,78,79,81,84,97,98] genetic models using Bayesian analysis (BRCAPRO and Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm [BOADICEA]),[84,99] and empiric observations,[52,55,58,100-102] including the Myriad prevalence tables.

In addition to BOADICEA, BRCAPRO is commonly used for genetic counseling in the clinical setting. BRCAPRO and BOADICEA predict the probability of being a carrier and produce estimates of breast cancer risk (see Table 3). The discrimination and accuracy (factors used to evaluate the performance of prediction models) of these models are much higher for these models' ability to report on carrier status than for their ability to predict fixed or remaining lifetime risk.

Read the original here:
Genetics of Breast and Gynecologic Cancers (PDQ)Health ...

Obstetrics & Gynecology

The Department of Obstetrics and Gynecology at the Medical College of Georgia at Augusta University is a comprehensive clinical service and educational department, specializing in the healthcare of women both on a primary and referral basis. We provide quality clinical services in following areas: General Obstetrics and Gynecology, Gynecologic Oncology, Maternal-Fetal Medicine, Reproductive Endocrinology, Infertility, and Genetics, and Urogynecology and Pelvic Surgery.

General Obstetrics and Gynecology provides a full range of general obstetrical and gynecological services ranging from outpatient care to surgery, and from routine visits to complicated consultations. In addition to normal obstetrical and gynecological services, our specialized research and interest areas include urodynamics, dysmenorrhea, menorrhagia, pelvic pain, menopause, and others.

See original here:
Obstetrics & Gynecology

ST genetics

Females calving heifers in their first two pregnancies produce up to 981 lbs. more milk over the two lactations than females calving back-to-back males.

(Hinde K, et al, (2014), Holsteins Favor Heifers, Not Bulls: Biased Milk Production Programmed during Pregnancy as a Function of Fetal Sex. PLoS ONE 9(2): e86169. doi:10.1371/journal.pone.0086169)

See the article here:
ST genetics

Genetics | Answers in Genesis

Scientists have discovered an unmistakable language within all living things. Like a miniature library, DNA stores piles of information in extraordinary molecules that specify the details of everything from the shape of flower petals to the color of your eyes. A supremely intelligent Author and Life-Giver left His indelible message in every living thing.

The species on earth today descend from the original created kinds of Genesis 1. The many inter-species breedings that are possible today (e.g., zonkeys, wholphins), as well as the close similarities within biological groups (e.g., the canine group) that are distinct from one another, remind us of this fact. But exactly why the created kinds have fractured into many incompatible species has only been answered indirectly by creationists.

Successful evolution requires the addition of new information and new genes that produce new proteins that are found in new organs and systems. Losing structures, or misplacing their development, should not be equated with the increased information that is needed to form novel structures and cellular systems.

Minimal genomes is the number of genes considered essential for a bacterium to survive in a nutrient-rich, stress-free and competitor-free environment in the lab. Evolutionists believe if the genes universal to all life can be determined then its just a matter of tinkering with the existing genetic information via mutations to go from goo to you.

Read more:
Genetics | Answers in Genesis

Genetics – Advocate Health Care

The Division of Genetics at Advocate Medical Group offers a team of genetic specialists to help individuals and families navigate the complex arena of genetics and genomics. We are committed to the diagnosis, management, and treatment of patients with genetic disorders.

Our specially trained clinical geneticists and genetic counselors provide a full range of services including:

We guide families facing hereditary and genetic disorders through complicated genetic issues in an easy-to-understand manner and provide educational resources helpful to your understanding of a genetic disorder. Our specialists can also help you identify support groups and social services, and coordinate and refer you to appropriate specialty providers based on your diagnosis.

The Division of Genetics offers comprehensive care that extends beyond genetic counseling and diagnosis. Our patients have access to multidisciplinary clinics that offer exceptional, compassionate care to children and adults with a variety of genetic disorders. Individuals in these multidisciplinary clinics have the opportunity to be evaluated by an experienced treatment team which includes multiple specialists from different healthcare disciplines.

Our specialists will determine which genetic tests are most appropriate for your particular situation. We discuss the risks, benefits, and limitations of genetic testing, as well as the emotional issues of a diagnosis and knowing your risk.

The Advocate Medical Group Genetics offers a range of services.

Read this article:
Genetics - Advocate Health Care

Molecular and Human Genetics | Baylor College of Medicine …

Top-Ranked Genetics Department

The Department of Molecular and Human Genetics at Baylor College of Medicine is ranked first in the countryin grants and funding from the National Institutes of Health.

The Department has launched Consultagene, a newand innovative virtual platform for genetics services.Find out more about it here.

Baylor Miraca Genetics Laboratories, a joint venture of Baylor College of Medicine and Miraca Holdings, Inc., has rebranded as Baylor Genetics.

Baylor College of Medicine centers, ledby Drs. Richard Gibbs, James Lupski, and Suzanne Leal, will receivefunding as a result of programslaunched today by the National Human Genome Research Institute.

The Department of Molecular and Human Genetics is participating in anNIH-sponsored, multi-center study called the Undiagnosed Disease Network. The program is currently accepting online applications.

Link:
Molecular and Human Genetics | Baylor College of Medicine ...

Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ)Health …

[Note: Many of the medical and scientific terms used in this summary are found in the NCI Dictionary of Genetics Terms. When a linked term is clicked, the definition will appear in a separate window.]

[Note: A concerted effort is being made within the genetics community to shift terminology used to describe genetic variation. The shift is to use the term variant rather than the term mutation to describe a difference that exists between the person or group being studied and the reference sequence. Variants can then be further classified as benign (harmless), likely benign, of uncertain significance, likely pathogenic, or pathogenic (disease causing). Throughout this summary, we will use the term pathogenic variant to describe a disease-causing mutation. Refer to the Cancer Genetics Overview summary for more information about variant classification.]

Renal cell cancer (RCC) is among the more commonly diagnosed cancers in both men and women. In the United States in 2016, about 62,700 cases of kidney cancer and renal pelvis cancer are expected to occur and lead to more than 14,240 deaths.[1] This cancer accounts for about 4% of all the adult malignancies. The male-to-female ratio is 1.5:1.[2] RCC is distinct from kidney cancer that involves the renal pelvis or renal medulla, and it only applies to cancer that forms in the lining of the kidney bed (i.e., in the renal tubules). Genetic pathogenic variants have been identified as the cause of inherited cancer risk in some RCC cancerprone families; these pathogenic variants are estimated to account for only 1% to 2% of RCC cases overall.[3] It is likely that other undiscovered genes and background genetic factors contribute to the development of familial RCC in conjunction with nongenetic risk factors. About 80% of sporadic RCC is of clear cell histopathology.[2] Nonrenal cell cancers of the kidney, including cancer of the renal pelvis or renal medulla, are not addressed in this summary.

RCC occurs in both sporadic and heritable forms. The following four major autosomal dominantly inherited RCC syndromes have been identified:

These genetic syndromes comprise the main focus of this summary. (Refer to the PDQ summary on Renal Cell Cancer Treatment and the PDQ summary on Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment for more information about sporadic kidney cancer.)

The natural history of each of the RCCs varies according to the characteristic histopathology of the renal tumors that arise in the specific syndrome. Although it is useful to follow the predominant reported natural history of each syndrome, each individual affected will need to be evaluated and monitored for occasional individual variations. The individual prognosis will depend upon the characteristics of the renal tumor at the time of detection and intervention and will differ for each syndrome (VHL, HPRC, BHD, and HLRCC). Prognostic determinants at diagnosis include the stage of the RCC, whether the tumor is confined to the kidney, primary tumor size, Fuhrman nuclear grade, and multifocality.[4-6]

RCC accounts for about 4% of all adult malignancies in the United States.[7] Epidemiologic studies of RCC suggest that a family history of RCC is a risk factor for the disease. The relative risk (RR) is estimated to be 2.5 for a sibling of an RCC-affected patient.[8-10] Analysis of renal carcinomas up to the year 2000 in the Sweden Family-Cancer Database, which includes all Swedes born since 1931 and their biological parents, led to the observation that risk of RCC was particularly high in the siblings of those affected with RCC. The higher RR in siblings than in parent-child pairs suggests that a recessive gene contributes to the development of sporadic renal carcinoma.[8] Investigators in Iceland studied all patients in Iceland who developed RCC between 1955 and 1999 (1,078 cases). In addition, they used an extensive computerized database to perform a unique genealogic study that included more than 600,000 Icelandic individuals. The results revealed that nearly 60% of RCC patients in Iceland during this time period had either a first-degree relative or a second-degree relative with RCC.[9] A study that evaluated 80,309 monozygotic twin individuals and 123,382 same-sex dizygotic twin individuals in Denmark, Finland, Norway, and Sweden found an excess cancer risk in twins whose co-twin was diagnosed with cancer.[11] The estimated cumulative risks were an absolute 5% higher (95% confidence interval [CI], 4%6%) in dizygotic twins (37%; 95% CI, 36%38%) and an absolute 14% higher (95% CI, 12%16%) in monozygotic twins (46%; 95% CI, 44%48%)for twins whose co-twin also developed cancerthan that in the overall cohort (32%). Overall heritability of cancer, calculated by assessing the relative contribution of heredity versus shared environment, was estimated to be 33%. Heritability of kidney cancer was estimated to be 38% (95% CI, 21%55%), with shared environmental factors not showing a significant contribution to overall risk.

Young age at onset is also a clue to possible hereditary etiology. In contrast with sporadic RCC, which is generally diagnosed during the fifth to seventh decades of life, hereditary forms of kidney cancer are generally diagnosed at an earlier age. In a review from the National Cancer Institute of over 600 cases of hereditary kidney cancer, the median age at diagnosis was 37 years, with 70% of the cases being diagnosed at age 46 years or younger,[12] compared with a median age at diagnosis of 64 years in the overall population.[13]. Bilaterality and multifocality are common in most heritable RCC, except in HLRCC.

There is no consensus regarding whom to refer for genetic consultation for a possible hereditary kidney cancer syndrome, although the following organizations have offered guidance:

Studies of environmental and lifestyle factors contributing to the risk of RCC focus almost exclusively on sporadic (i.e., nonhereditary) RCC. Smoking, hypertension, and obesity are the major environmental and lifestyle risk factors associated with RCC.[16] In addition, workers who were reportedly exposed to the environmental carcinogen trichloroethylene developed sporadic clear cell RCC, presumably due to somatic variants in the VHL gene.[17] Dietary intake of vegetables and fruits has been inversely associated with RCC. Greater intake of red meat and milk products have been associated with increased RCC risk, although not consistently.[18]

Four major heritable renal cell cancer (RCC) syndromes (von Hippel-Lindau syndrome [VHL], hereditary leiomyomatosis and renal cell cancer [HLRCC], Birt-Hogg-Dub syndrome [BHD], and hereditary papillary renal cancer [HPRC]) with autosomal dominant inheritance are listed in Table 1, along with their susceptibility genes. These syndromes are summarized in detail in the following sections of this summary.

Autosomal dominant mode of inheritance is the pattern of transmission reported within the families affected by these major RCC syndromes. Genetic tests performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories are available for VHL, BHD, HLRCC, and HPRC. Genetic counseling is a prerequisite for genetic testing. (Refer to the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information.)

Von Hippel-Lindau syndrome (VHL) (OMIM) is an autosomal dominant, inherited disease with a predisposition to multiple neoplasms. Germline pathogenic variants in the VHL gene predispose individuals to specific types of both benign and malignant tumors and cysts in many organ systems. These include central nervous system (CNS) hemangioblastomas, retinal angiomas, clear cell RCCs (ccRCCs) and cysts, pheochromocytomas, cysts and neuroendocrine tumors (NETs) of the pancreas, endolymphatic sac tumors (ELSTs), and cystadenomas of the epididymis (males) and of the broad ligament (females).[1,2,13,14] A multidisciplinary approach is required for the evaluation, and in some cases the management, of individuals with VHL. Specialists involved in the care of individuals with VHL may include urologic oncology surgeons, neurosurgeons, general surgeons, ophthalmologists, endocrinologists, neurologists, medical oncologists, genetic counselors, and medical geneticists.

The VHL gene is a tumor suppressor gene located on the short arm of chromosome 3 at cytoband 3p25-26.[15] VHL pathogenic variants occur in all three exons of this gene. Most affected individuals inherit a germline pathogenic variant of VHL from an affected parent and a normal ("wild-type") VHL from their unaffected parent. VHL-associated tumors conform to Knudsons two-hit hypothesis,[16,17] in which the clonal origin or first transformed cell of the tumor occurs only after both VHL alleles in a cell are inactivated. The inherited germline pathogenic variant in VHL represents the first "hit," which is present in every cell in the body. The second hit is a somatic pathogenic variant, one that occurs in a specific tissue at some point after a person's birth. It damages the normal, or wild-type, VHL allele, creating a clonal neoplastic cell of origin, which then proliferates into a tumor mass.

The prevalence of VHL has been estimated to be 1 per 35,000 and 1 per 40,000 persons in the general population.[18,19] Thus, the number of VHL-affected individuals in the United States is estimated at between 6,000 and 7,000. Precise quantification of this number is a challenge because it requires comprehensive screening of potentially at-risk blood relatives of individuals diagnosed with VHL. Within this population, the large number of unique pathogenic variants in this small three-exon gene indicates that most family clusters have not arisen from a single founder. A founder effect was reported when a large U.S. family was compared with a family in Germany, both of whom had pheochromocytoma-predominant VHL.[20]

VHL pathogenic variants are highly penetrant and overall penetrance is greater than 90% by age 65 years.[18] Almost all carriers develop one or more types of syndrome-related neoplasms.

Each offspring of an individual with VHL has a 50% chance of inheriting the VHL pathogenic variant allele from their affected parent. The primary factors affecting the chances of developing VHL are: 1) a relative with VHL; 2) a germline pathogenic variant in the VHL gene; 3) a family member with one of the manifestations of VHL (e.g., CNS hemangioblastomas). (Refer to the Genetic diagnosis section of this summary for more information.)

There are a few highly predictive, direct genotype -phenotype correlations.[21,22]

For example, pheochromocytoma without RCC is the VHL pattern found in a large family with a single nucleotide change at position 505.[14,21,23] A similar family outside the United States was identified and found to have a common ancestor (i.e., a founder pathogenic variant).[23] However, no common ancestor was identified for several other pathogenic variants that occurred in multiple families. In general, founder pathogenic variants do not comprise a significant fraction of all VHL variants. Single nucleotide changes at position 712 and 713 are hot spots for pathogenic variants leading to pheochromocytomas.[23] Pathogenic variant types leading to clinical VHL include missense, nonsense, frameshifts, insertions, partial and complete deletions, and splice-site variants of VHL.

When a VHL diagnosis is made in an individual whose ancestors (biological parents and their kindred) do not have VHL, this may result from a de novo (new) VHL pathogenic variant in the affected individual. Patients diagnosed with VHL, who have no family history of VHL, have been estimated to comprise about 23% of VHL kindreds.[24] A new variant is by definition a postzygotic event, because it is not transmitted from a parent.

Depending on the embryogenesis stage at which the new variant occurs, there may be different somatic cell lineages carrying the variant; this influences the extent of mosaicism. Mosaicism is the presence in an individual of two or more cell lines that differ in genotype but which arise from a single zygote.[25] If the postzygotic de novo variant affects the gonadal cell line, there is a risk of transmitting a germline variant to offspring.[24]

VHL-associated polycythemia (also known as familial erythrocytosis type 2 or Chuvash polycythemia) is a rare, autosomal recessive blood disorder caused by homozygous or pathogenic variants in VHL in which affected individuals develop abnormally high numbers of red blood cells. The affected individuals have biallelic pathogenic variants in the VHL gene. The typical VHL syndromic tumors do not occur in these affected individuals.[26-28]

In sporadic RCC, other genetic lesions have been found. These include PBRM1, SETD2, and BAP1 and may have relevance in RCC arising in VHL patients. Future studies will define their significance in the hereditary patient population.[29]

The VHL gene product, pVHL, is a 213 amino acid protein that regulates hypoxia-inducible factors (HIFs), maintains a normal extracellular matrix, is involved in microtubule and centrosome regulation, and regulates the cell cycle.[30-32] These functions are described in more detail in the following paragraphs.

pVHL regulates protein levels of HIF1-alpha and HIF2-alpha in the cell by acting as an E3 ubiquitin ligase for HIF. In normoxic conditions, HIF1-alpha and HIF2-alpha are enzymatically hydroxylated. The hydroxylated HIF subunits are bound by the VHL protein complex, covalently linked to ubiquitin, and degraded by the S26 proteasome.

Under hypoxic conditions, hydroxylation does not occur; HIF1-alpha and HIF2-alpha are not bound to the VHL protein complex and are not ubiquitinated. The resulting high levels of HIF1-alpha and HIF2-alpha drive increased transcription of a variety of proteins. Loss of functional pVHL creates a pseudohypoxic state, with uncontrolled HIF1-alpha and HIF2-alpha protein levels, and resultant inappropriate transcription of HIF-dependent genes.

HIF1-alpha and HIF2-alpha possess distinct functional characteristics, and a shift towards a HIF2-alphadominant phenotype occurs in RCC. HIF1-alpha and HIF2-alpha may preferentially upregulate Myc activity.[33] Hypoxia activated factor has been shown to increase HIF2-alpha transactivation [34] and HIF1-alpha instability.[35] Preferential loss of chromosome 14q, the locus for the HIF1-alpha gene, results in decreased levels of HIF1-alpha.[36]

Emerging data point to the importance of pVHL-mediated control of the primary cilium and the cilia centrosome cycle. The nonmotile primary cilium acts as a mechanosensor, is a regulator of cell signaling, and controls cellular entry into mitosis.[37] Loss of primary ciliary function results in the loss of the cells ability to maintain planar cell polarity, which results in cyst formation.[38] Loss of pVHL results in loss of the primary cilium.[39] pVHL binds to and stabilizes microtubules [40] in a glycogen synthase 3dependent fashion.[41] Loss of pVHL or expression of variant pVHL in cells also results in unstable astral microtubules, dysregulation of the spindle assembly checkpoint, and an increase in aneuploidy.[32]

pVHL reintroduction induces cell cycle arrest and p27 upregulation after serum withdrawal in VHL null cell lines.[30] Additionally, pVHL destabilizes Skp2, and upregulates p27 in response to DNA damage.[42] Nuclear localization and intensity of p27 is inversely associated with tumor grade.[43] pVHL binds to, stabilizes, and transactivates p53 [44] in a phosphorylation-dependent fashion.[45] The importance of these findings is underscored by the findings that p53 is an important regulator of mitotic checkpoints, and loss of p53 permits aneuploid cells to survive.[46]

Functional pVHL is needed to form an extracellular fibronectin matrix.[47] Additionally, pVHL directly binds to, phosphorylates, and regulates fibronectin.[48] Collagen IV homeostasis is also regulated by pVHL. pVHL isoforms that are collagen IV bindingincompetent demonstrated a malignant phenotype.[31]

No representative VHL animal models are currently available. Vhlh gene knockout in mice did not produce RCC or hemangioblastomas.[49] Murine homologues of the R200W-induced polycythemia in mice, phenocopying Chuvash polycythemia.[50] A R167Q homologue did not generate RCC.[51] Coordinate inactivation of Vhlh and Pten resulted in a higher rate of cyst formation, but, once again, no obvious RCC was observed.[52] The discovery of several new potential tumor suppressor genes inactivated in the context of RCC, including PBRM1,[53] SETD2,[54] and BAP1 [55] provide new avenues for developing relevant animal models of at least some VHL disease manifestations.

The age at onset of VHL varies both from family to family and between members of the same family. This fact informs the guidelines for starting age and frequency of presymptomatic surveillance examinations. The youngest age at onset of specific VHL syndrome components is observed for retinal hemangioblastomas and pheochromocytomas; targeted screening is recommended in children younger than 10 years. At least one study has demonstrated that the incidence of new lesions varies depending on patient age, the underlying pathogenic variant, and the organ involved.[56] Examples of reported mean ages and age ranges of VHL clinical manifestations are summarized in Table 2.

(Refer to the Clinical diagnosis section of this summary for more information.)

Four clinical types of VHL have been described. In 1991, researchers classified VHL as type 1 (without pheochromocytoma) and type 2 (with pheochromocytoma).[19] In 1995, VHL type 2 was further subdivided into type 2A (with pheochromocytoma, but without RCC) and type 2B (with pheochromocytoma and RCC).[20] More recently, it was reported that VHL type 2C comprises patients with isolated pheochromocytoma without hemangioblastoma or RCC.[57] These specific VHL phenotypes are summarized below.

More than 55% of VHL-affected individuals develop only multiple renal cell cysts. The VHL-associated RCCs that occur are characteristically multifocal and bilateral and present as a combined cystic and solid mass.[58] Among individuals with VHL, the cumulative RCC risk has been reported as 24% to 45% overall. RCCs smaller than 3 cm in this disease tend to be low grade (Fuhrman nuclear grade 2 or 4) and minimally invasive,[59] and their rate of growth varies widely.[60] An investigation of 228 renal lesions in 28 patients who were followed up for at least 1 year showed that transition from a cyst to a solid lesion was rare.[58] Complex cystic and solid lesions contained neoplastic tissue that uniformly enlarged. These data may be used to help predict the progression of renal lesions in VHL. Figure 1 depicts bilateral renal tumors in a patient with VHL.

Enlarge

Figure 1. von Hippel-Lindau syndromeassociated renal cell cancers are characteristically multifocal and bilateral and present as a combined cystic and solid mass. Red arrow indicates a lesion with a solid and cystic component, and white arrow indicates a predominantly solid lesion.

Tumors larger than 3 cm may increase in grade as they grow, and metastasis may occur.[60,61] RCCs often remain asymptomatic for long intervals.

Patients can also develop pancreatic cysts, cystadenomas, and pancreatic NETs.[2] Pancreatic cysts and cystadenomas are not malignant, but pancreatic NETs possess malignant characteristics and are typically resected if they are 3 cm or larger (2 cm if located in the head of the pancreas).[62] A review of the natural history of pancreatic NETs shows that these tumors may demonstrate nonlinear growth characteristics.[63]

Retinal manifestations, first reported more than a century ago, were one of the first recognized aspects of VHL. Retinal hemangioblastomas (also known as capillary retinal angiomas) are one of the most frequent manifestations of VHL and are present in more than 50% of patients.[64] Retinal involvement is one of the earliest manifestations of VHL, with a mean age at onset of 35.9 years.[65] These tumors are the first manifestation of VHL in nearly 80% of affected individuals and may occur in children younger than 10 years.[65,66]

Retinal hemangioblastomas occur most frequently in the periphery of the retina but can occur in other locations such as the optic nerve, a location much more difficult to treat. Retinal hemangioblastomas appear as a bright orange spherical tumor supplied by a tortuous vascular supply. Nearly 50% of patients have bilateral retinal hemangioblastomas.[64] The median number of lesions per affected eye is approximately six.[67] Other retinal lesions in VHL can include retinal vascular hamartomas, flat vascular tumors located in the superficial aspect of the retina.[68]

Longitudinal studies are important for the understanding of the natural history of these tumors. Left untreated, retinal hemangioblastomas can be a major source of morbidity in VHL, with approximately 8% of patients [64] having blindness caused by various mechanisms, including secondary maculopathy, contributing to retinal detachment, or possibly directly causing retinal neurodegeneration.[69] Patients with symptomatic lesions generally have larger and more numerous retinal hemangioblastomas. Long-term follow-up studies demonstrate that most lesions grow slowly and that new lesions do not develop frequently.[67,70]

Hemangioblastomas are the most common disease manifestation in patients with VHL, potentially affecting more than 70% of individuals. A prospective study assessed the natural history of hemangioblastomas.[71] After a mean follow-up of 7 years, 75% of the 225 patients studied developed new lesions. Fifty-one percent of existing hemangioblastomas remained stable. The remaining lesions exhibited heterogeneous growth rates, with cerebellar and brainstem lesions growing faster than those in the spinal cord or cauda equina. Approximately 12% of hemangioblastomas developed either peritumoral or intratumoral cysts, and 6.4% were symptomatic and required treatment. Increased tumor burden or total tumor number detected was associated with male sex, longer follow-up, and genotype (all P < .01). Partial germline deletions were associated with more tumors per patient than were missense variants (P < .01). Younger patients developed more tumors per year. Hemangioblastoma growth rate was higher in men than in women (P < .01). Figures 2 and 3 depict cerebellar and spinal hemangioblastomas, respectively, in patients with VHL.

Enlarge

Figure 2. Hemangioblastomas are the most common disease manifestation in patients with von Hippel-Lindau syndrome. The left panel shows a sagittal view of brainstem and cerebellar lesions. The middle panel shows an axial view of a brainstem lesion. The right panel shows a cerebellar lesion (red arrow) with a dominant cystic component (white arrow).

Enlarge

Figure 3. Hemangioblastomas are the most common disease manifestation in patients with von Hippel-Lindau syndrome. Multiple spinal cord hemangioblastomas are shown.

The rate of pheochromocytoma formation in the VHL patient population is 25% to 30%,[72,73] with bilaterality occurring in some patients. Of patients with VHL pheochromocytomas, 44% developed disease in both adrenal glands.[74] One study reported a mean age at onset for pheochromocytoma in VHL patients of 30 years.[2] Rate of malignant transformation is very low. Levels of plasma and urine normetanephrine are typically elevated in patients with VHL disease,[75] and approximately two-thirds will experience physical manifestations.[72] Missense VHL gene pathogenic variants correlated with the risk of pheochromocytoma in patients with VHL,[72] with a low incidence of pheochromocytoma in patients with complete deletion of the VHL gene. The rate of VHL germline pathogenic variants in nonsyndromic pheochromocytomas and paragangliomas was very low in a cohort of 182 patients, with only 1 of 182 patients ultimately diagnosed with VHL disease.[76]

Paragangliomas are rare in VHL patients but can occur in the head and neck or abdomen.[77] A review of VHL patients who developed pheochromocytomas and/or paragangliomas revealed that 90% of patients manifested pheochromocytomas and 19% presented with a paraganglioma.[74]

The mean age at diagnosis of VHL-related pheochromocytomas and paragangliomas is approximately 30 years,[73,78] and patients with multiple tumors were diagnosed more than a decade earlier than patients with solitary lesions in one series (19 vs. 34 years; P < .001).[78] Diagnosis of pheochromocytoma was made in patients as young as 5 years in one cohort,[73] providing a rationale for early testing. All 21 pediatric patients with pheochromocytomas in this 273-patient cohort had elevated plasma normetanephrines.[73]

ELSTs are adenomatous tumors arising from the endolymphatic duct or sac within the posterior part of the petrous bone.[79] ELSTs are rare in the sporadic setting, but are apparent on imaging in 11% to 16% of patients with VHL. Although these tumors do not metastasize, they are locally invasive, eroding through the petrous bone and the inner ear structures.[79,80] Approximately 30% of VHL patients with ELSTs have bilateral lesions.[79,81]

ELSTs are an important cause of morbidity in VHL patients. ELSTs evident on imaging are associated with a variety of symptoms, including hearing loss (95% of patients), tinnitus (92%), vestibular symptoms (such as vertigo or disequilibrium) (62%), aural fullness (29%), and facial paresis (8%).[79,80] In approximately half of patients, symptoms (particularly hearing loss) can occur suddenly, probably as a result of acute intralabyrinthine hemorrhage.[80] Hearing loss or vestibular dysfunction in VHL patients can also present in the absence of radiologically evident ELSTs (approximately 60% of all symptomatic patients) and is believed to be a consequence of microscopic ELSTs.[79]

Hearing loss related to ELSTs is typically irreversible; serial imaging to enable early detection of ELSTs in asymptomatic patients and resection of radiologically evident lesions are important components in the management of VHL patients.[82,83] Surgical resection by retrolabyrinthine posterior petrosectomy is usually curative and can prevent onset or worsening of hearing loss and improve vestibular symptoms.[80,82]

Tumors of the broad ligament can occur in females with VHL and are known as papillary cystadenomas. These tumors are extremely rare, and fewer than 20 have been reported in the literature.[84] Papillary cystadenomas are histologically identical to epididymal cystadenomas commonly observed in males with VHL.[85] One important difference is that papillary cystadenomas are almost exclusively observed in patients with VHL, whereas epididymal cystadenomas in men can occur sporadically.[86] Therefore, any female with a broad ligament papillary cystadenoma should be referred for genetic counseling. These tumors are frequently cystic, and although they become large, they generally have a fairly indolent behavior.

More than one-third of all cases of epididymal cystadenomas reported in the literature and most cases of bilateral cystadenomas have been reported in patients with VHL disease.[87] Among symptomatic patients, the most common presentation is a painless, slow-growing scrotal swelling. The differential diagnoses of epididymal tumors include adenomatoid tumor (which is the most common tumor in this site), metastatic ccRCC, and papillary mesothelioma.[88]

One group of investigators observed that epididymal tumorigenesis in VHL disease occurred in two distinct sequential steps: maldevelopment of VHL-deficient mesonephric cells caused by developmental arrest of progenitor cells, followed by neoplastic papillary proliferation with activation/up-regulation of HIF and VEGF, associated with continuous reactive fibrovascular proliferation.[89] In a small series, histological analysis did not reveal features typically associated with malignancy, such as mitotic figures, nuclear pleomorphism, and necrosis. Lesions were strongly positive for CK7 and negative for RCC. CAIX was positive in all tumors. PAX8 was positive in most cases. These features were reminiscent of clear cell papillary RCC, a relatively benign form of RCC without known metastatic potential.[85]

The primary risk factor for VHL (or any of the hereditary forms of renal cancer under consideration) is the presence of a family member affected with the disease. Risk assessment should also consider gender and age for some specific VHL-related neoplasms. For example, pheochromocytomas may have onset in early childhood,[1] as early as 8 years of age.[90] Gender-specific VHL clinical findings include epididymal cystadenoma in males (10%26%), which are virtually pathognomonic for VHL, especially when bilateral, and are rare in the general male population. Epididymal cysts are also common in VHL, but they are reported in 23% of the general male population, making them a poor diagnostic discriminator.[1] Females have histologically similar lesions to cystadenomas that occur in the broad ligament.[1]

Each offspring of an individual with VHL has a 50% chance of inheriting the VHL variant allele from their affected parent. Diagnosis of VHL is frequently based on clinical criteria. If there is family history of VHL, then a patient with one or more specific VHL-type tumors (e.g., hemangioblastoma of the CNS or retina, pheochromocytoma, or ccRCC) may be diagnosed with VHL.

At-risk family members should be informed that genetic testing for VHL is available. A family member with a clinical diagnosis of VHL or who is showing signs and symptoms of VHL is initially offered genetic testing. Germline pathogenic variants in VHL are detected in more than 99% of families affected by VHL. Sequence analysis of all three exons detect point variants in the VHL gene (~72% of all pathogenic variants).[91] Using Southern blot analysis and/or quantitative polymerase chain reaction to detect partial or complete gene deletions will detect pathogenic variants in the remaining 28% of VHL families.[91,92] The technique has a detection rate approaching 100%.[91] Newer techniques such as array comparative genomic hybridization (array CGH) are powerful tools for identifying genomic imbalances. Anecdotal evidence exists for the utility of next-generation sequencing in cases of suspected mosaicism with a negative VHL genetic test.[93]

Genetic counseling is first provided, including discussion of the medical, economic, and psychosocial implications for the patient and their bloodline relatives. After counseling, the patient may choose to voluntarily undergo testing, after providing informed consent. Additional counseling is given at the time results are reported to the patient. When a VHL pathogenic variant is identified in a family member, their biologic relatives who then test negative for the same pathogenic variant are not carriers of the trait (i.e., they are true negatives) and are not predisposed to developing any VHL manifestations. Equally important, the children of true-negative family members are not as risk of VHL either. Clinical testing throughout their lifetime is therefore unnecessary.[13]

A germline pathogenic variant in the VHL gene is considered a genetic diagnosis. It is expected to carry a predisposition to clinical VHL and confers a 50% risk among offspring to inherit the VHL pathogenic variant. Approximately 400 unique pathogenic variants in the VHL gene have been associated with clinical VHL, and their presence verifies the disease-causing capability of the variant. The diagnostic genetic evaluation in a previously untested family generally begins with a clinically diagnosed individual. If a VHL pathogenic variant is identified, that specific pathogenic variant becomes the DNA marker for which other biological relatives may be tested. In cases where there is a clear VHL clinical diagnosis without a VHL pathogenic variant by usual testing of peripheral blood lymphocytes and without a history of VHL in the biological parents or in the parents kindreds, then either a de novo pathogenic variant or mosaicism may be the cause. The latter may be detected by performing genetic testing on other bodily tissues, such as skin fibroblasts or exfoliated buccal cells.

Diagnosis of VHL is frequently based on clinical criteria (see Table 4). If there is family history of VHL, then a previously unevaluated family member may be diagnosed clinically if they present with one or more specific VHL-related tumors (e.g., CNS or retinal hemangioblastoma, pheochromocytoma, ccRCC, or endolymphatic sac tumor). If there is no family history of VHL, then a clinical diagnosis requires that the patient have two or more CNS hemangioblastomas or one CNS hemangioblastoma and a visceral tumor or endolymphatic sac tumor. See Table 4 for more diagnostic details.[2,13,14]

Since 1998, when a cohort of 93 VHL families in whom all germline pathogenic variants were identified was reported, diagnoses have included a combined approach of clinical and genetic testing within families. The diagnostic strategy differs among individual family members. Table 4 summarizes a combined approach of genetic testing and clinical diagnosis.

Surveillance guidelines that have been suggested for various manifestations of VHL are summarized in Table 5. In general, these recommendations are based on expert opinion and consensus; most are not evidence-based. These modalities may be used for the initial clinical diagnostic testing and also for periodic surveillance of at-risk individuals for early detection of developing neoplasm. Periodic presymptomatic screening is advised for at-risk individuals. At-risk individuals are those testing positive for a VHL pathogenic variant and those individuals who choose not to be tested for a VHL pathogenic variant but have biologic relatives affected by VHL. The risk of inheriting the VHL predisposition in such persons may be as high as 50%.

Level of evidence: 5

The management of VHL has changed significantly as clinicians have learned how to best balance the risk of cancer dissemination while minimizing renal morbidity. Some of the initial surgical series focused on performing a bilateral radical nephrectomy for renal tumors followed by a renal transplantation.[94,95] Nephron-sparing surgery (NSS) for VHL was introduced in the 1980s after several groups demonstrated a low risk of cancer dissemination with a less-radical surgical approach.[96,97] In 1995, a large, multi-institutional series demonstrated how NSS could produce excellent cancer-specific survival in patients with RCC.[98] Because of multiple reports of excellent outcomes, when feasible, NSS is now considered the surgical standard of care. Over time, the technique of NSS in this population has been refined to minimize damage to the adjacent normal parenchyma. To avoid the taking of a wide margin, enucleative resection was developed and allows the tumor and pseudocapsule to be shelled off the surrounding adjacent normal parenchyma.[99]

Patients with VHL can have dozens of renal tumors; therefore, resection of all evidence of disease may not be feasible. To minimize the morbidity of multiple surgical procedures, loss of kidney function, and the risk of distant progression, a specific timing for intervention was questioned. The National Cancer Institute evaluated a specific size threshold to trigger surgical intervention. An evaluation of 52 patients treated before the largest lesion reached 3 cm demonstrated no evidence of distant metastases or need for renal replacement therapy at a median follow-up of 60 months.[60] Later series reinforced that this was an important threshold because 0 of 108 patients with tumors managed at 3 cm or smaller had evidence of distant spread.[100] For patients with tumors larger than 3 cm, a total of 27.3% (20 of 73) developed distant recurrence.[100] This threshold is now widely used to trigger surgical intervention for VHL-associated ccRCC. When surgery is performed on a patient with VHL, resection of more than a dozen renal tumors may be necessary.[101] The use of intraoperative ultrasound to identify and then remove smaller lesions may delay the need for further surgical interventions.[102]

Many patients with VHL develop new RCCs on an ongoing basis and may require further intervention. Adhesions and perinephric scarring make subsequent surgical procedures more challenging. While a radical nephrectomy could be considered, NSS is still the preferred approach, when feasible. While there may be a higher incidence of complications, repeat and salvage NSS can enable patients to maintain excellent renal functional outcomes and provide promising oncologic outcomes at intermediate follow-up.[103,104] These surgeries may be best handled at a specialized center with significant experience with this surgical approach.[105]

Level of evidence: 3di

Thermal ablative techniques utilize either heating or cooling of a mass in an effort to destroy the tumor. Cryoablation (CA) and radiofrequency ablation (RFA) were introduced into the management of small renal masses in the late 1990s.[106,107] For sporadic renal masses, both thermal ablative techniques have a nearly 90% recurrence-free survival rate, leading the American Urologic Association to consider this as a recommendation in high-risk patients with a small renal mass.[108] For patients with VHL, the clinical applications of ablative techniques are still not clearly defined, and surgery is still the most-studied intervention. Ablative techniques were first introduced into the management of VHL-associated RCC in a phase II trial investigating the effects of ablation at the time of lesion resection. In this study, 11 tumors were treated, and an intra-operative ultrasound showed complete elimination of blood flow to the tumors; on final pathology, there was evidence of treatment effect on all tumors.[109] Since this time, some centers have utilized thermal ablative techniques for primary and salvage management in patients with VHL with good success.[110] Other centers have found that techniques such as RFA have a higher failure rate and should be reserved for patients with marginal renal function.[111] Despite limited long-term data, these techniques have been increasingly utilized in the treatment of RCC in patients with VHL. A single-institution study evaluated treatment trends in RCC in 113 patients with VHL. Between 2004 and 2009, 43% of cases were managed with RFA at this center.[112]

Thermal ablation may play an increasing role in the salvage therapy setting for individuals with a high risk of morbidity from surgery. Cryoablation as salvage therapy was evaluated in a series of 14 patients to avoid the morbidity of repeat NSS. There was minimal change in renal function; at a median follow-up of 37 months, there was suspicion for lesion recurrence in only 4 of 33 tumors treated.[113] However, it must be cautioned that surgery after thermal ablation is a very challenging endeavor, with a significantly higher rate of postoperative complications due to adhesions and scarring, especially along the tract of the ablative probes.[114-116] In younger individuals who may need further surgical management in their lifetimes, clinicians must consider how a thermal ablation could impact future RCC management.[105,117]

The clinical applications of ablative techniques in VHL are still not clearly defined, and surgery is still the most-studied intervention. The available clinical evidence suggests that ablative approaches be reserved for small (3 cm), solid-enhancing renal masses in older patients with high operative risk, especially in patients facing salvage renal surgery because of a higher complication rate. Young age, tumor size larger than 4 cm, hilar tumors, and cystic lesions can be regarded as relative contraindications. Irreversible coagulopathy is widely accepted as an absolute contraindication.[118,119]

Level of evidence: 3di

A 2011 study prospectively evaluated the safety and efficacy of sunitinib in VHL patients.[120] Fifteen patients with VHL were given 50 mg of sunitinib daily for 28 days, followed by 14 days off for up to four cycles, with a primary endpoint of toxicity. Grade 3 toxicity included fatigue in five patients (33%); dose reductions were made in ten patients (75%). A significant response was observed in RCC but not in hemangioblastoma. Eighteen RCCs and 21 hemangioblastoma lesions were evaluable. Of these, six RCCs (33%) responded partially, versus none of the hemangioblastomas (P=.014). The expression of pFRS2 in hemangioblastoma tissue was also observed to be higher than in RCC, thus raising the hypothesis that treatment with fibroblast growth factor pathway-blocking agents may benefit patients with hemangioblastoma.[120] A retrospective study of 14 patients with VHL, 10 of whom had metastatic disease, demonstrated significant response in metastatic and primary RCC lesions. Eleven patients had cerebellar hemangioblastomas, and eight had spinal hemangioblastomas. No response was seen in hemangioblastomas.[121]

Case series and individual case reports have been published on an oral antiangiogenic agent, SU5416, in patients with VHL.[122-124] Modest improvement was observed in patients with retinal hemangioblastomas.[122,123] In a series of six VHL patients treated with SU5416, stabilization in CNS hemangioblastomas was observed in two patients.[124] A study of intravitreally administered antivascular endothelial growth factor therapy for a patient with retinal hemangioma yielded mixed results.[125] SU5416 is not licensed for human use.

Level of evidence: 2

Two studies suggest that pregnancy is associated with hemangioblastoma progression in patients with VHL.[126,127] One study retrospectively examined the records of 29 patients with VHL from the Netherlands who became pregnant 48 times (49 newborns) between 1966 and 2010 (40% became pregnant before 1990); imaging records were available for 31% of the pregnancies. Researchers reported that 17% of all pregnancies had VHL-related complications, including three patients who had craniospinal hemangioblastoma that significantly (P = .049) changed in progression score before and after pregnancy.[126] This study's findings are in contrast with a small, prospective investigation.[127] Until a large-scale, international, prospective investigation is conducted, all investigations suggest using a conservative approach that includes medical surveillance during pregnancy.

Morbidity and mortality in VHL vary and are influenced by the individual and the familys VHL phenotype (e.g., Type 1, 2A, 2B, or 2C). (Refer to the VHL familial phenotypes section of this summary for more information.)

In the past, metastatic RCC has caused about one-third of deaths in patients with VHL, and in some reports, it was the leading cause of death.[90,128-130] With increased surveillance of pathogenic variantpositive individuals, the RCC mortality rate is thought to have diminished.

Hemangioblastomas of the CNS, although histologically benign, are a major cause of morbidity and arise anywhere along the craniospinal axis, including the brainstem.[2] Pancreatic NETs, formerly called pancreatic islet cell tumors, in some cases, may grow rapidly and metastasize to liver and bone.[128,131] Hearing and vision may also be decreased or lost as a result of VHL tumors. Periodic screening allows early detection and may prevent advanced disease.

Currently, the renal manifestations of VHL are still generally managed surgically or with thermal ablation. There is a clear unmet need for better management strategies. These will include defining the molecular biology and genetics of kidney cancer development, which may result in the development of effective prevention or early intervention therapies. In addition, the evolving understanding of the molecular biology of established kidney cancers may provide opportunities to phenotypically normalize the cancer by modulating residual VHL function, identifying new targets, or discovering synthetic lethal strategies that can effectively eradicate RCC.

Hereditary leiomyomatosis and renal cell cancer (HLRCC) (OMIM) is characterized by the presence of one or more of the following: cutaneous leiomyomas (or leiomyomata), uterine leiomyomas (fibroids) in females, and RCC. Germline pathogenic variants in the fumarate hydratase (FH) gene are responsible for the susceptibility to HLRCC. FH encodes fumarate hydratase, the enzyme that catalyzes the conversion of fumarate to malate in the tricarboxylic acid cycle (Krebs cycle).

Historically, the predisposition to the development of cutaneous leiomyomas was referred to as multiple cutaneous leiomyomatosis. In 1973, two kindreds were described in which multiple members over three generations exhibited cutaneous leiomyomas and uterine leiomyomas and/or leiomyosarcomas inherited in an autosomal dominant pattern.[132] That report also described a woman aged 20 years with uterine leiomyosarcoma and metastatic RCC. Subsequently, the association of cutaneous and uterine leiomyomas became known as Reed syndrome. However, the clear association of cutaneous leiomyomas and RCC was not described until 2001, when a study reported two Finnish families in whom cutaneous and uterine leiomyomas and papillary type 2 RCC co-segregated.[3] The name hereditary leiomyomatosis and renal cell cancer was then assigned. The term HLRCC is preferred because it is impossible to distinguish between individuals with cutaneous leiomyomas who do or do not have an increased risk of renal cancer.

The FH gene consists of ten exons encompassing 22.15 kb of DNA. The gene is highly conserved across species. The human FH gene is located on chromosome 1q42.3-43.

HLRCC is an autosomal dominant syndrome; a single variant FH allele is sufficient to cause the disease.[133] Inherited biallelic pathogenic variants cause fumarate hydratase deficiency (FHD), a disorder characterized by rapidly progressive neonatal neurologic impairment including hypotonia, seizures, and cerebral atrophy. (Refer to the Genetically related disorders section of this summary for more information.)

Germline pathogenic variants in FH, plus somatic variants and loss of heterozygosity (LOH) in RCC, suggest that loss of function in the fumarate hydratase protein is the basis of tumor formation in HLRCC and, further, that FH functions as a tumor suppressor gene.[3,134]

Various pathogenic variants in FH have been identified in families with HLRCC. Most are missense pathogenic variants, but nonsense, frameshift, and splice-site variants have been described.[5,6,134,135] Recently, whole-gene or partial deletions have been identified.

The prevalence of HLRCC is unknown. It is estimated that more than 100 families with HLRCC have been seen at the National Institutes of Health, but it is likely that HLRCC remains an underrecognized entity (R. Srinivasan, MD, PhD, oral communication, April 2014).

Considering the three major clinical manifestations combined, the penetrance of HLRCC is considered to be very high. However, the estimated cumulative incidence of RCC varies widely, from between 2% and 7% to 15%, and perhaps as high as 32%, in families with germline FH pathogenic variants, depending on ascertainment method and the imaging modalities used.[3-6,136]

No genotype-phenotype correlations have been described. Thus, no correlation has been observed between specific FH variants and the occurrence of cutaneous lesions, uterine leiomyomas, or RCC in HLRCC.[6]

Although smaller studies have suggested the presence of different variant spectra in FHD and HLRCC,[5,134] a study that included a larger cohort of patients indicated that the variant distribution is fairly similar in these two entities.[133] The predisposition to HLRCC versus FHD likely results from a difference in gene dosage, rather than the location of the FH variant as originally suggested.[134]

Between 80% and 100% of individuals with HLRCC have identifiable, deleterious sequence alterations in FH.[5,6,137]

FHD, resulting from the inheritance of biallelic pathogenic variants in FH, is an autosomal recessive inborn error of metabolism characterized by rapidly progressive neurologic impairment including hypotonia, seizures, and cerebral atrophy. Homozygous or compound heterozygous germline pathogenic variants in FH are found in individuals with FHD.[138,139] To date, RCC has not been reported in FHD-affected individuals. Most individuals with FHD survive only a few months; very few survive to early adulthood.[140] However, a parent (heterozygous carrier) of an individual with FHD developed cutaneous leiomyomas similar to those observed in HLRCC.[134]

LOH around the FH locus has been identified in two early-onset sporadic uterine leiomyomas and a soft tissue sarcoma of the lower limb without other associated tumor characteristics of the heritable disease.[141,142] All three tumors displayed biallelic inactivation of FH. In sporadic forms of kidney cancer, there have been no somatic pathogenic variants identified in FH to date.[141]

The mechanisms by which alterations in FH lead to HLRCC are still being elucidated. Biallelic inactivation of FH has been shown to result in loss of oxidative phosphorylation and reliance on aerobic glycolysis to meet cellular energy requirements. Blockage of the Krebs cycle at FH results in increased levels of intracellular fumarate, inhibiting HIF prolyl hydroxylases. Inactivating variants of FH also appear to result in the generation of reactive oxygen species, further contributing to the stabilization of HIF.[143] This upregulation of the HIF pathway leads to a pseudohypoxic state and upregulation of a transcriptional program contributing to aggressive tumor biology.[144] Others have demonstrated upregulation of the antioxidant response pathway due to posttranslational modification of KEAP1. The resultant NRF-2 dysregulation leads to upregulation of antioxidant response elementcontrolled genes such as aldo-keto reductase family 1 member, B10 (AKR1B10), possibly contributing to the neoplastic process.[145]

The clinical characteristics of HLRCC include cutaneous leiomyomas, uterine leiomyomas (fibroids), and RCC. Affected individuals may have multiple cutaneous leiomyomas, a single skin leiomyoma, or no cutaneous lesion; an RCC that is typically solitary, or no renal tumors; and/or uterine leiomyomas. Disease severity shows significant intrafamilial and interfamilial variation.[3,5,6]

Cutaneous leiomyomas present as firm pink or reddish-brown papules and nodules distributed over the trunk and extremities and, occasionally, on the face. These lesions occur at a mean age of 25 years (age range, 1047 years) and tend to increase in size and number with age. Lesions are sensitive to light touch and/or cold temperature and are, less commonly, painful. Pain is correlated with severity of cutaneous involvement.[5] The presence of multiple cutaneous leiomyomas is associated with HLRCC until proven otherwise and should prompt a genetic workup; a solitary leiomyoma requires careful analysis of family history. (Refer to the Clinical diagnosis and Differential diagnosis sections below for more information.)

The onset of uterine leiomyomas in women with HLRCC occurs at a younger age than in women in the general population. The age at diagnosis ranges from 18 to 52 years (mean age, 30 years). Uterine leiomyomas are usually large and numerous. Most women experience symptoms including irregular or heavy menstruation and pelvic pain, thus requiring treatment at a younger age than females with leiomyomas in the general population. Women with HLRCC and uterine leiomyomas undergo hysterectomy or myomectomy for symptomatic uterine leiomyomas at a younger age (<30 years) than do women in the general population (median age, 45 years).[5,137,146,147]

The symptoms of RCC may include hematuria, lower back pain, and a palpable mass. However, a large number of individuals with RCC are asymptomatic. Furthermore, not all individuals with HLRCC present with or develop RCC. Most RCCs are unilateral and solitary; in a few individuals, they are multifocal. Approximately 10% to 32% of individuals with HLRCC who presented with multiple cutaneous leiomyomas had RCC at the time that renal imaging was performed.[5,137] The median age at detection of RCC was 37 years,[148] although some cases have been reported to occur as early as age 10 years.[149] In contrast to other hereditary renal cancer syndromes, RCCs associated with HLRCC are aggressive,[150,151] with Fuhrman nuclear grade 3 or 4 in many cases and 9 of 13 individuals dying from metastatic disease within 5 years of diagnosis.[5] Figure 4 depicts RCCs in a patient with HLRCC.

Enlarge

More here:
Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ)Health ...