Category Archives: Genetics

The Genetics Of Becoming An Ant Queen – sciencefriday.com

Clonal raider ants carrying and grooming larvae. Ants were tagged with colored dots to allow for behavioral observation. Credit: Daniel Kronauer

Many ant species have a queen, the member of the colony that lays eggs. The rest of the ants are divided into different roles that support the queen and the colony. So what ants become queens versus workers? Scientists found that the gene ilp2 that regulates insulin played a role in determining what ant becomes the queen. Their results were published in the journal Science.

[What is the origin of the word quark? Well, let us tell you the tale of particle physics, Aristotle, and James Joyce]

Biologist Ingrid Fetter-Pruneda, an author on that study, talks about how this gene works in determining a queen and what this can tell us about the evolution of societies in insects and beyond.

Continued here:
The Genetics Of Becoming An Ant Queen - sciencefriday.com

Genetics | Children’s Hospital of Pittsburgh

The Division of Medical Genetics at UPMC Children's Hospital of Pittsburgh is committed to the treatment and study of genetic disorders in children, providing advanced patient care of the highest quality and an active research program dedicated to providing a deeper understanding of the fundamental issues underlying these disorders and developing better therapeutic approaches.

Clinical services, a critical part of the comprehensive care offered by the Division of Medical Genetics, include diagnosis, evaluation, treatment and management of a range of genetic conditions, such as birth defects, chromosomal abnormalities, specific genetic syndromes and inborn errors of metabolism. These services are organized under two programs:an Inborn Errors of Metabolism Clinic and a General Genetics Clinic. Both offer an experienced team of faculty and staff, including physician geneticists, genetic counselors, a nurse practitioner, metabolic dietitian and social worker.

The Inborn Errors of Metabolism Clinic at Childrens Hospital provides diagnostic services, evaluation, treatment management, genetic counseling and other support to children with these inherited disorders and to their families. A Phenylketonuria Clinic specializes in the diagnosis, treatment and management of one of the most common inborn errors of metabolism.

Counseling, education and other support services to address all of the needs of patients and their families are also provided. Genetic counselors are available to help to identify families at risk, serve as patient advocates, help families understand genetic disorders and their consequences, provide supportive counseling and counsel families who may be at risk for inherited conditions. Division staff members also help families arrange for physical, occupational and speech therapists, comprehensive developmental assessments and other services and support.

Research within the division is providing new insight into genetic disorders from which new and better therapies can be developed. The laboratory research program focuses on discovering the underlying causes of genetic diseases, understanding the clinical implications of mutations in genes, and development of novel approaches for treatment of genetic disorders. An active clinical research program collaborates with other genetic programs world wide to evaluate new therapies for genetic disease.

Referrals from primary care physicians, medical and social agencies or other Childrens Hospital specialty services are helpful, but not necessary. Authorization from the patients insurance provider and/or primary care physician may be needed for insurance coverage. The Division of Medical Genetics staff can help with these matters. Medical records from previous medical evaluations may be requested. For more information, please call the office number listed.

Read more here:
Genetics | Children's Hospital of Pittsburgh

Genetics – Study.com

Genetics is a field of scientific study focused on heredity and DNA variation. Genetics professionals need a strong background in biological science to support their work, and most positions in this field require graduate degrees. Learn more about genetics and relevant career options here.

Genes are composed of DNA, the molecule that determines a living thing's unique physical characteristics, such as hair color or immunity to certain diseases. Geneticists are the biological scientists who study genes and how genetic variations affect the body. The job duties of genetics professionals vary by setting. While clinical geneticists and genetics doctors work directly with patients, genetic scientists spend most of their time in research or laboratory settings.

Many careers in this field require doctoral degrees in genetics or closely related fields; however, options are available to those who hold relevant bachelor's or master's degrees. Many geneticists focus their careers on research and laboratory study and typically hold Ph.D.s in genetics, molecular biology or related fields of study.

Geneticists may also serve as clinical geneticists, physicians who provide medical care to patients suffering from hereditary diseases. Clinical geneticists must complete medical school and obtain licensure to practice as physicians. Below is a list of Study.com articles to help you choose the degree program that's right for you.

While online degree programs in genetics are rare, some schools offer correspondence courses that lead to college credit. Students may be able to complete courses or earn degrees in biology and other genetics-related subjects.

While becoming a geneticist is the obvious career path, a variety of other career options are also available for students who do not possess a doctoral degree. Individuals with a master's degree in a related branch of counseling may become genetic counselors, providing therapeutic services to patients who have been diagnosed with hereditary diseases.

With a master's degree in genetics, a student might find employment as a laboratory research assistant. A bachelor's degree related to genetics may also qualify a graduate for a job as a laboratory technician. Here are a few links to articles that may help you discover which career you want to pursue.

According to the U.S. Bureau of Labor Statistics (BLS), jobs for biological scientists were expected to increase 19 percent from 2012-2022, faster than the average for other occupations (www.bls.gov). Advances in research have uncovered new information on genes, and more genetics professionals will be needed to develop medical treatments out of this new information. Although employment rates in this field fluctuate according to government funding and economic climate, the BLS reports that biological scientists, such as geneticists, are less prone to job loss caused by recessions.

Read more

Follow this link:
Genetics - Study.com

Genetics | Ohio State Medical Center

Ana Morales Reyes, MS, LGC

I direct, assist and coordinate cardiovascular genomic research studies, maintaining a project database and disseminating information on familial dilated cardiomyopathy (enlargement of the heart). My focus is on peripartum cardiomyopathy and I work as a genetics counselor in this area. After receiving my BS in biology at the University of Puerto Rico, I obtained my MS in genetic counseling from Brandeis University.

My practice includes patients in the Adult Down Syndrome Clinic and the Medical Genetics and Genomics Program. Along with studies of genes involved with cutaneous squamous cell carcinoma (skin cancer), I have researched the effectiveness and impact of genetic counseling and helped spearhead the passage of Ohios genetic counselor licensure law. I received my BS from the University of New Hampshire in Durham and my MS in genetic counseling from Northwestern.

I received my BS in molecular genetics from Ohio State in 1993, returning to The Ohio State University Wexner Medical Center in 1995 after graduating from Sarah Lawrence College with an MS in human genetics. Since then, I have been a cancer genetics counselor, working closely with families and individuals. Most of my research is concentrated on Lynch syndrome and includes screening all colorectal and endometrial cancer patients for this condition.

I am a licensed genetic counselor and assistant clinical professor in the Division of Human Genetics. My area of research is neurogenetics, which studies the genetic factors contributing to the development of neurological disorders.

Along with doing research on and providing genetic cancer counseling to patients and families, I work with the Coriell Personalized Medicine Collaborative on exploring the use of genomic information and heart issues. I also direct Family HealthLink, an interactive website allowing patients and families to estimate their genetic risk for cancer and heart disease. My degrees include a BS from the University of Wisconsin and an MS from Sarah Lawrence College.

Along with my duties in cancer risk assessment and counseling, I research the PMS2 gene associated with Lynch syndrome. I also investigate and coordinate multiple cancer genetics studies, including those aimed at determining hereditary components of chronic lymphocytic leukemia as well as BRCA (breast cancer) gene mutations. I received my BS in molecular genetics from Ohio State and my MS in genetic counseling from the University of Pittsburgh.

Along with providing cancer risk assessment and counseling to patients and families, I also research universal screening for Lynch syndrome. Additionally I serve as project manager for the Ohio Colorectal Cancer Prevention Initiative, a study of 4,000 newly diagnosed individuals and their relatives. In 2010, I received my BS in public health from Indiana University and obtained my MS in genetic counseling from the University of Pittsburgh in 2012.

My focus on clinical cancer genetics and translational research includes coordinating studies with the Columbus Breast Cancer Tissue Bank and also on the genetic development of cancerous and noncancerous conditions. Along with providing consultations to those with a history of cancer, I act as a liaison to the Molecular Pathology Laboratory. I received my BS from Michigan State, a MS from the University of Wisconsin and in 2010, a MSW from Ohio State.

I provides cancer risk assessment and counseling to individuals and families with a history of cancer. My research interests are in the genetics of endocrine cancers. I am a co-investigator and coordinator for the Familial Papillary Thyroid Cancer Study, which is aimed at identifying inherited risk factors for papillary thyroid cancer. Im also the coordinator for the Endocrine Neoplasia Repository, a repository of data and biological samples used for studying several aspects of thyroid cancer and other endocrine cancers.

Iam a licensed genetic counselor in the Division of Human Genetics. I provide cardiovascular genetic risk assessment and counseling to individuals and families with a history of cardiovascular disease.

I am a licensed genetic counselor in the Division of Human Genetics. I am also an assistant professor in clinical internal medicine.

My clinical duties include providing comprehensive cancer genetic consultations to individuals and families with a history of cancer. Cancer genetic consultation requires documentation of cancers in the family, risk assessment, screening recommendations and incorporation of genetic testing as necessary.

Read the original post:
Genetics | Ohio State Medical Center

Analysts Set $4.35 Price Target for Fulgent Genetics Inc …

Fulgent Genetics Inc (NASDAQ:FLGT) has been assigned a consensus broker rating score of 3.00 (Hold) from the one brokers that provide coverage for the stock, Zacks Investment Research reports. One research analyst has rated the stock with a hold rating.

Brokers have set a 1 year consensus price objective of $4.35 for the company and are anticipating that the company will post ($0.05) EPS for the current quarter, according to Zacks. Zacks has also given Fulgent Genetics an industry rank of 70 out of 255 based on the ratings given to related companies.

Several equities analysts have recently weighed in on FLGT shares. Credit Suisse Group decreased their price target on shares of Fulgent Genetics from $6.50 to $6.00 and set an outperform rating on the stock in a research note on Thursday, March 1st. Piper Jaffray Companies downgraded shares of Fulgent Genetics from an overweight rating to a neutral rating in a research note on Thursday, March 1st. Finally, ValuEngine raised shares of Fulgent Genetics from a sell rating to a hold rating in a research note on Wednesday, May 2nd.

Shares of Fulgent Genetics traded down $0.27, hitting $4.19, during midday trading on Friday, MarketBeat.com reports. The companys stock had a trading volume of 11,472 shares, compared to its average volume of 12,262. The company has a market cap of $79.79 million, a P/E ratio of -38.09 and a beta of 0.28. Fulgent Genetics has a 12-month low of $2.72 and a 12-month high of $7.04.

Fulgent Genetics (NASDAQ:FLGT) last posted its quarterly earnings results on Monday, May 7th. The company reported ($0.06) earnings per share for the quarter, missing the Thomson Reuters consensus estimate of ($0.04) by ($0.02). The business had revenue of $4.65 million during the quarter. Fulgent Genetics had a negative return on equity of 7.62% and a negative net margin of 26.57%. analysts expect that Fulgent Genetics will post -0.29 earnings per share for the current year.

Fulgent Genetics Company Profile

Fulgent Genetics, Inc, together with its subsidiaries, provides genetic testing services to physicians with clinically actionable diagnostic information. Its technology platform integrates data comparison and suppression algorithms, learning software, and genetic diagnostics tools and integrated laboratory processes.

Get a free copy of the Zacks research report on Fulgent Genetics (FLGT)

For more information about research offerings from Zacks Investment Research, visit Zacks.com

Receive News & Ratings for Fulgent Genetics Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for Fulgent Genetics and related companies with MarketBeat.com's FREE daily email newsletter.

See the original post:
Analysts Set $4.35 Price Target for Fulgent Genetics Inc ...

Plant genetics – Wikipedia

Plant genetics is the study of genes, genetic variation, and heredity specifically in Plants.[1][2] It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

The discoverer of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene. Much of Mendel's work with plants still forms the basis for modern plant genetics.

Plants, like all known organisms, use DNA to pass on their traits. Animal genetics often focuses on parentage and lineage, but this can sometimes be difficult in plant genetics due to the fact that plants can, unlike most animals, can self-fertilize. Speciation can be easier in many plants due to unique genetic abilities, such as being well adapted to polyploidy. Plants are unique in that they are able to make their own food via photosynthesis, a process which is achieved by use of a structure mostly exclusive to plants: chloroplasts. Chloroplasts, like the superficially similar mitochondria, possess their own DNA. Chloroplasts thus provide an additional reservoir for genes and genetic diversity, and an extra layer of genetic complexity not found in animals.

The study of plant genetics has major economic impacts: many staple crops are genetically modified to increase yields, confer pest and disease resistance, provide resistance to herbicides, or to increase their nutritional value.

The field of plant genetics began with the work of Gregor Mendel, who is often called the "father of genetics". He was an Augustinian priest and scientist born on 20 July 1822 in Austria-Hungary. He worked at the Abbey of St. Thomas in Brno , where his organism of choice for studying inheritance and traits was the pea plant. Mendel's work tracked many phenotypic traits of pea plants, such as their height, flower color, and seed characteristics. Mendel showed that the inheritance of these traits follows particular laws, which were later named after him. His seminal work on genetics was published in 1866, but went almost entirely unnoticed until 1900. Mendel died in 1884. The significance of Mendel's work was not recognized until the turn of the 20th century. Its rediscovery prompted the foundation of modern genetics.

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms and some viruses. The main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of blueprints or a recipe, or a code, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information. Geneticists, including plant geneticists, use this sequencing of DNA to their advantage as they splice and delete certain genes and regions of the DNA molecule to produce a different or desired genotype and thus, also producing a different phenotype.

Plants, like all other known living organisms, pass on their traits using DNA. Plants however are unique from other living organisms in the fact that they have Chloroplasts. Like mitochondria, chloroplasts have their own DNA. Like animals, plants experience somatic mutations regularly, but these mutations can contribute to the germ line with ease, since flowers develop at the ends of branches composed of somatic cells. People have known of this for centuries, and mutant branches are called "sports". If the fruit on the sport is economically desirable, a new cultivar may be obtained.

Some plant species are capable of self-fertilization, and some are nearly exclusively self-fertilizers. This means that a plant can be both mother and father to its offspring, a rare occurrence in animals. Scientists and hobbyists attempting to make crosses between different plants must take special measures to prevent the plants from self-fertilizing. In plant breeding, people create hybrids between plant species for economic and aesthetic reasons. For example, the yield of Corn has increased nearly five-fold in the past century due in part to the discovery and proliferation of hybrid corn varieties.[3] Plant genetics can be used to predict which combination of plants may produce a plant with Hybrid vigor, or conversely many discoveries in Plant genetics have come from studying the effects of hybridization.

Plants are generally more capable of surviving, and indeed flourishing, as polyploids. Polyploid organisms have more than two sets of homologous chromosomes. For example, humans have two sets of homologous chromosomes, meaning that a typical human will have 2 copies each of 23 different chromosomes, for a total of 46. Wheat on the other hand, while having only 7 distinct chromosomes, is considered a hexaploid and has 6 copies of each chromosome, for a total of 42.[4] In animals, inheritable germline polyploidy is less common, and spontaneous chromosome increases may not even survive past fertilization. In plants however this is no such problem, polyploid individuals are created frequently by a variety of processes, however once created usually cannot cross back to the parental type. Polyploid individuals, if capable of self-fertilizing, can give rise to a new genetically distinct lineage, which can be the start of a new species. This is often called "instant speciation". Polyploids generally have larger fruit, an economically desirable trait, and many human food crops, including wheat, maize, potatoes, peanuts,[5] strawberries and tobacco, are either accidentally or deliberately created polyploids.

Arabidopsis thaliana, also known as thale cress, has been the model organism for the study of plant genetics. As Drosphila, a species of fruit fly, was to the understanding of early genetics, so has been arabidopsis to the understanding of plant genetics.

Genetically modified (GM) foods are produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits than previous methods such as selective breeding and mutation breeding.[6]

Genetically modifying plants is an important economic activity: in 2017, 89% of corn, 94% of soybeans, and 91% of cotton produced in the US were from genetically modified strains[7]. Since the introduction of GM crops, yields have increased by 22%, and profits have increased to farmers, especially in the developing world, by 68%. An important side effect of GM crops has been decreased land requirements, [8]

Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its unsuccessful Flavr Savr delayed-ripening tomato.[9][10] Most food modifications have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton. Genetically modified crops have been engineered for resistance to pathogens and herbicides and for better nutrient profiles.[11] Other such crops include the economically important GM papaya which are resistant to the highly destructive Papaya ringspot virus, and the nutritionally improved golden rice (it is however still in development).[12]

There is a scientific consensus[13][14][15][16] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[17][18][19][20][21] but that each GM food needs to be tested on a case-by-case basis before introduction.[22][23] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[24][25][26][27] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[28][29][30][31] There are still ongoing public concerns related to food safety, regulation, labeling, environmental impact, research methods, and the fact that some GM seeds are subject to intellectual property rights owned by corporations.[32]

Genetic modification has been the cause for much research into modern plant genetics, and has also lead to the sequencing of many plant genomes. Today there are two predominant procedures of transforming genes in organisms: the "Gene gun" method and the Agrobacterium method.

The gene gun method is also referred to as "biolistics" (ballistics using biological components). This technique is used for in vivo (within a living organism) transformation and has been especially useful in monocot species like corn and rice.This approach literally shoots genes into plant cells and plant cell chloroplasts. DNA is coated onto small particles of gold or tungsten approximately two micrometres in diameter. The particles are placed in a vacuum chamber and the plant tissue to be engineered is placed below the chamber. The particles are propelled at high velocity using a short pulse of high pressure helium gas, and hit a fine mesh baffle placed above the tissue while the DNA coating continues into any target cell or tissue.

Transformation via Agrobacterium has been successfully practiced in dicots, i.e. broadleaf plants, such as soybeans and tomatoes, for many years. Recently it has been adapted and is now effective in monocots like grasses, including corn and rice. In general, the Agrobacterium method is considered preferable to the gene gun, because of a greater frequency of single-site insertions of the foreign DNA, which allows for easier monitoring. In this method, the tumor inducing (Ti) region is removed from the T-DNA (transfer DNA) and replaced with the desired gene and a marker, which is then inserted into the organism. This may involve direct inoculation of the tissue with a culture of transformed Agrobacterium, or inoculation following treatment with micro-projectile bombardment, which wounds the tissue.[33] Wounding of the target tissue causes the release of phenolic compounds by the plant, which induces invasion of the tissue by Agrobacterium. Because of this, microprojectile bombardment often increases the efficiency of infection with Agrobacterium. The marker is used to find the organism which has successfully taken up the desired gene. Tissues of the organism are then transferred to a medium containing an antibiotic or herbicide, depending on which marker was used. The Agrobacterium present is also killed by the antibiotic. Only tissues expressing the marker will survive and possess the gene of interest. Thus, subsequent steps in the process will only use these surviving plants. In order to obtain whole plants from these tissues, they are grown under controlled environmental conditions in tissue culture. This is a process of a series of media, each containing nutrients and hormones. Once the plants are grown and produce seed, the process of evaluating the progeny begins. This process entails selection of the seeds with the desired traits and then retesting and growing to make sure that the entire process has been completed successfully with the desired results.

Domingo, Jos L.; Bordonaba, Jordi Gin (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734742. doi:10.1016/j.envint.2011.01.003. PMID21296423.

Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values. 40: 132. doi:10.1177/0162243915598381.

And contrast:

Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology: 15. doi:10.3109/07388551.2015.1130684. PMID26767435.

and

Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96: 18511855. doi:10.1002/jsfa.7523. PMID26536836.

Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

See the article here:
Plant genetics - Wikipedia

Myriad Genetics (MYGN) versus Quotient (QTNT) Head-To-Head …

Myriad Genetics (NASDAQ: MYGN) and Quotient (NASDAQ:QTNT) are both medical companies, but which is the superior stock? We will contrast the two businesses based on the strength of their profitability, dividends, analyst recommendations, earnings, institutional ownership, risk and valuation.

Risk & Volatility

Myriad Genetics has a beta of 0.55, meaning that its stock price is 45% less volatile than the S&P 500. Comparatively, Quotient has a beta of 0.25, meaning that its stock price is 75% less volatile than the S&P 500.

This table compares Myriad Genetics and Quotients net margins, return on equity and return on assets.

Insider & Institutional Ownership

61.5% of Quotient shares are owned by institutional investors. 6.7% of Myriad Genetics shares are owned by company insiders. Comparatively, 29.0% of Quotient shares are owned by company insiders. Strong institutional ownership is an indication that endowments, large money managers and hedge funds believe a stock is poised for long-term growth.

Analyst Recommendations

This is a summary of current ratings and price targets for Myriad Genetics and Quotient, as reported by MarketBeat.

Myriad Genetics currently has a consensus price target of $30.91, suggesting a potential downside of 20.48%. Quotient has a consensus price target of $11.50, suggesting a potential upside of 30.68%. Given Quotients stronger consensus rating and higher probable upside, analysts plainly believe Quotient is more favorable than Myriad Genetics.

Earnings and Valuation

This table compares Myriad Genetics and Quotients gross revenue, earnings per share and valuation.

Myriad Genetics has higher revenue and earnings than Quotient. Quotient is trading at a lower price-to-earnings ratio than Myriad Genetics, indicating that it is currently the more affordable of the two stocks.

Summary

Myriad Genetics beats Quotient on 8 of the 13 factors compared between the two stocks.

About Myriad Genetics

Myriad Genetics, Inc., a molecular diagnostic company, focuses on developing and marketing novel predictive medicine, personalized medicine, and prognostic medicine tests worldwide. The company offers molecular diagnostic tests, including myRisk Hereditary Cancer, a DNA sequencing test for hereditary cancers; BRACAnalysis, a DNA sequencing test to assess the risk of developing breast and ovarian cancer; BART, a DNA sequencing test for hereditary breast and ovarian cancer; BRACAnalysis CDx, a DNA sequencing test for use as a companion diagnostic with the platinum based chemotherapy agents and poly ADP ribose inhibitor Lynparza; and Tumor BRACAnalysis CDx, a DNA sequencing test that is designed to be utilized to predict response to DNA damaging agents. It also provides COLARIS, a DNA sequencing test for colorectal and uterine cancer; COLARIS AP, a DNA sequencing test for colorectal cancer; Vectra DA, a protein quantification test for assessing the disease activity of rheumatoid arthritis; Prolaris, a RNA expression test for assessing the aggressiveness of prostate cancer; and EndoPredict, a RNA expression test for assessing the aggressiveness of breast cancer. In addition, the company offers myPath Melanoma, a RNA expression test for diagnosing melanoma; myChoice HRD, a companion diagnostic to measure three modes of homologous recombination deficiency; and GeneSight, a DNA genotyping test to optimize psychotropic drug selection for neuroscience patients. Further, it provides biomarker discovery, and pharmaceutical and clinical services to the pharmaceutical, biotechnology, and medical research industries; and operates an internal medicine emergency hospital primarily for internal medicine and hemodialysis. The company has collaboration with AstraZeneca for the development of an indication for BRACAnalysis CDx. Myriad Genetics, Inc. was founded in 1991 and is headquartered in Salt Lake City, Utah.

About Quotient

Quotient Limited, a commercial-stage diagnostics company, develops, manufactures, and commercializes conventional reagent products used for blood grouping in the transfusion diagnostics market worldwide. The company is developing MosaiQ, a proprietary technology platform, which provides tests for blood grouping and serological disease screening. It also develops, manufactures, and commercializes conventional reagent products for blood grouping, including antisera products that are used to identify blood-group antigens; reagent red blood cells, which enable the identification of blood-group antibodies; whole blood control products for use as daily quality assurance tests; and ancillary products that are used to support blood grouping. The company sells its products to donor collection agencies and testing laboratories, hospitals, independent patient testing laboratories, reference laboratories, blood banking operations, and other diagnostic companies, as well as to original equipment manufacturers. Quotient Limited was founded in 2007 and is based in Penicuik, the United Kingdom.

Receive News & Ratings for Myriad Genetics Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for Myriad Genetics and related companies with MarketBeat.com's FREE daily email newsletter.

Continued here:
Myriad Genetics (MYGN) versus Quotient (QTNT) Head-To-Head ...

Gregor Mendel – Wikipedia

Gregor Johann Mendel (Czech: eho Jan Mendel;[1] 20 July 1822[2] 6 January 1884) (English: ) was a scientist, Augustinian friar and abbot of St. Thomas' Abbey in Brno, Margraviate of Moravia. Mendel was born in a German-speaking family[3] in the Silesian part of the Austrian Empire (today's Czech Republic) and gained posthumous recognition as the founder of the modern science of genetics. Though farmers had known for millennia that crossbreeding of animals and plants could favor certain desirable traits, Mendel's pea plant experiments conducted between 1856 and 1863 established many of the rules of heredity, now referred to as the laws of Mendelian inheritance.[4]

Mendel worked with seven characteristics of pea plants: plant height, pod shape and color, seed shape and color, and flower position and color. Taking seed color as an example, Mendel showed that when a true-breeding yellow pea and a true-breeding green pea were cross-bred their offspring always produced yellow seeds. However, in the next generation, the green peas reappeared at a ratio of 1 green to 3 yellow. To explain this phenomenon, Mendel coined the terms recessive and dominant in reference to certain traits. (In the preceding example, the green trait, which seems to have vanished in the first filial generation, is recessive and the yellow is dominant.) He published his work in 1866, demonstrating the actions of invisible factorsnow called genesin predictably determining the traits of an organism.

The profound significance of Mendel's work was not recognized until the turn of the 20th century (more than three decades later) with the rediscovery of his laws.[5] Erich von Tschermak, Hugo de Vries, Carl Correns and William Jasper Spillman independently verified several of Mendel's experimental findings, ushering in the modern age of genetics.[4]

Mendel was born into a German-speaking family in Hynice (Heinzendorf bei Odrau in German), at the Moravian-Silesian border, Austrian Empire (now a part of the Czech Republic).[3] He was the son of Anton and Rosine (Schwirtlich) Mendel and had one older sister, Veronika, and one younger, Theresia. They lived and worked on a farm which had been owned by the Mendel family for at least 130 years.[6] During his childhood, Mendel worked as a gardener and studied beekeeping. As a young man, he attended gymnasium in Opava (called Troppau in German). He had to take four months off during his gymnasium studies due to illness. From 1840 to 1843, he studied practical and theoretical philosophy and physics at the Philosophical Institute of the University of Olomouc, taking another year off because of illness. He also struggled financially to pay for his studies, and Theresia gave him her dowry. Later he helped support her three sons, two of whom became doctors.

He became a friar in part because it enabled him to obtain an education without having to pay for it himself. As the son of a struggling farmer, the monastic life, in his words, spared him the "perpetual anxiety about a means of livelihood."[8] He was given the name Gregor (eho in Czech)[1] when he joined the Augustinian friars.

When Mendel entered the Faculty of Philosophy, the Department of Natural History and Agriculture was headed by Johann Karl Nestler who conducted extensive research of hereditary traits of plants and animals, especially sheep. Upon recommendation of his physics teacher Friedrich Franz,[10] Mendel entered the Augustinian St Thomas's Abbey in Brno (called Brnn in German) and began his training as a priest. Born Johann Mendel, he took the name Gregor upon entering religious life. Mendel worked as a substitute high school teacher. In 1850, he failed the oral part, the last of three parts, of his exams to become a certified high school teacher. In 1851, he was sent to the University of Vienna to study under the sponsorship of Abbot C. F. Napp so that he could get more formal education. At Vienna, his professor of physics was Christian Doppler.[12] Mendel returned to his abbey in 1853 as a teacher, principally of physics. In 1856, he took the exam to become a certified teacher and again failed the oral part. In 1867, he replaced Napp as abbot of the monastery.[13]

After he was elevated as abbot in 1868, his scientific work largely ended, as Mendel became overburdened with administrative responsibilities, especially a dispute with the civil government over its attempt to impose special taxes on religious institutions.[14] Mendel died on 6 January 1884, at the age of 61, in Brno, Moravia, Austria-Hungary (now Czech Republic), from chronic nephritis. Czech composer Leo Janek played the organ at his funeral. After his death, the succeeding abbot burned all papers in Mendel's collection, to mark an end to the disputes over taxation.[15]

Gregor Mendel, who is known as the "father of modern genetics", was inspired by both his professors at the Palack University, Olomouc (Friedrich Franz and Johann Karl Nestler), and his colleagues at the monastery (such as Franz Diebl) to study variation in plants. In 1854, Napp authorized Mendel to carry out a study in the monastery's 2 hectares (4.9 acres) experimental garden,[16] which was originally planted by Napp in 1830.[13] Unlike Nestler, who studied hereditary traits in sheep, Mendel used the common edible pea and started his experiments in 1856.

After initial experiments with pea plants, Mendel settled on studying seven traits that seemed to be inherited independently of other traits: seed shape, flower color, seed coat tint, pod shape, unripe pod color, flower location, and plant height. He first focused on seed shape, which was either angular or round. Between 1856 and 1863 Mendel cultivated and tested some 28,000 plants, the majority of which were pea plants (Pisum sativum).[18][19][20] This study showed that, when true-breeding different varieties were crossed to each other (e.g., tall plants fertilized by short plants), in the second generation, one in four pea plants had purebred recessive traits, two out of four were hybrids, and one out of four were purebred dominant. His experiments led him to make two generalizations, the Law of Segregation and the Law of Independent Assortment, which later came to be known as Mendel's Laws of Inheritance.[21]

Mendel presented his paper, "Versuche ber Pflanzenhybriden" ("Experiments on Plant Hybridization"), at two meetings of the Natural History Society of Brno in Moravia on 8 February and 8 March 1865. It generated a few favorable reports in local newspapers,[23] but was ignored by the scientific community. When Mendel's paper was published in 1866 in Verhandlungen des naturforschenden Vereines in Brnn,[24] it was seen as essentially about hybridization rather than inheritance, had little impact, and was only cited about three times over the next thirty-five years. His paper was criticized at the time, but is now considered a seminal work.[25] Notably, Charles Darwin was unaware of Mendel's paper, and it is envisaged that if he had, genetics as we know it now might have taken hold much earlier.[26][27] Mendel's scientific biography thus provides an example of the failure of obscure, highly original, innovators to receive the attention they deserve.[28]

Mendel began his studies on heredity using mice. He was at St. Thomas's Abbey but his bishop did not like one of his friars studying animal sex, so Mendel switched to plants. Mendel also bred bees in a bee house that was built for him, using bee hives that he designed.[30] He also studied astronomy and meteorology,[13] founding the 'Austrian Meteorological Society' in 1865.[12] The majority of his published works was related to meteorology.[12]

Mendel also experimented with hawkweed (Hieracium)[31] and honeybees. He published a report on his work with hawkweed,[32] a group of plants of great interest to scientists at the time because of their diversity. However, the results of Mendel's inheritance study in hawkweeds was unlike his results for peas; the first generation was very variable and many of their offspring were identical to the maternal parent. In his correspondence with Carl Ngeli he discussed his results but was unable to explain them.[31] It was not appreciated until the end of the nineteen century that many hawkweed species were apomictic, producing most of their seeds through an asexual process.

None of his results on bees survived, except for a passing mention in the reports of Moravian Apiculture Society.[33] All that is known definitely is that he used Cyprian and Carniolan bees,[34] which were particularly aggressive to the annoyance of other monks and visitors of the monastery such that he was asked to get rid of them.[35] Mendel, on the other hand, was fond of his bees, and referred to them as "my dearest little animals".[36]

He also described novel plant species, and these are denoted with the botanical author abbreviation "Mendel".[37]

It would appear that the forty odd scientists who listened to Mendel's two path-breaking lectures failed to understand his work. Later, he also carried a correspondence with Carl Naegeli, one of the leading biologists of the time, but Naegli too failed to appreciate Mendel's discoveries. At times, Mendel must have entertained doubts about his work, but not always: "My time will come," he reportedly told a friend.[8]

During Mendel's lifetime, most biologists held the idea that all characteristics were passed to the next generation through blending inheritance, in which the traits from each parent are averaged. Instances of this phenomenon are now explained by the action of multiple genes with quantitative effects. Charles Darwin tried unsuccessfully to explain inheritance through a theory of pangenesis. It was not until the early twentieth century that the importance of Mendel's ideas was realized.

By 1900, research aimed at finding a successful theory of discontinuous inheritance rather than blending inheritance led to independent duplication of his work by Hugo de Vries and Carl Correns, and the rediscovery of Mendel's writings and laws. Both acknowledged Mendel's priority, and it is thought probable that de Vries did not understand the results he had found until after reading Mendel.[5] Though Erich von Tschermak was originally also credited with rediscovery, this is no longer accepted because he did not understand Mendel's laws.[38] Though de Vries later lost interest in Mendelism, other biologists started to establish modern genetics as a science.[5] All three of these researchers, each from a different country, published their rediscovery of Mendel's work within a two-month span in the Spring of 1900.

Mendel's results were quickly replicated, and genetic linkage quickly worked out. Biologists flocked to the theory; even though it was not yet applicable to many phenomena, it sought to give a genotypic understanding of heredity which they felt was lacking in previous studies of heredity which focused on phenotypic approaches.[40] Most prominent of these previous approaches was the biometric school of Karl Pearson and W. F. R. Weldon, which was based heavily on statistical studies of phenotype variation. The strongest opposition to this school came from William Bateson, who perhaps did the most in the early days of publicising the benefits of Mendel's theory (the word "genetics", and much of the discipline's other terminology, originated with Bateson). This debate between the biometricians and the Mendelians was extremely vigorous in the first two decades of the twentieth century, with the biometricians claiming statistical and mathematical rigor,[41] whereas the Mendelians claimed a better understanding of biology.[42][43] (Modern genetics shows that Mendelian heredity is in fact an inherently biological process, though not all genes of Mendel's experiments are yet understood.)[44][45]

In the end, the two approaches were combined, especially by work conducted by R. A. Fisher as early as 1918. The combination, in the 1930s and 1940s, of Mendelian genetics with Darwin's theory of natural selection resulted in the modern synthesis of evolutionary biology.[46][47]

In 1936, R.A. Fisher, a prominent statistician and population geneticist, reconstructed Mendel's experiments, analyzed results from the F2 (second filial) generation and found the ratio of dominant to recessive phenotypes (e.g. green versus yellow peas; round versus wrinkled peas) to be implausibly and consistently too close to the expected ratio of 3 to 1.[48][49][50] Fisher asserted that "the data of most, if not all, of the experiments have been falsified so as to agree closely with Mendel's expectations,"[48] Mendel's alleged observations, according to Fisher, were "abominable", "shocking",[51] and "cooked".[52]

Other scholars agree with Fisher that Mendel's various observations come uncomfortably close to Mendel's expectations. Dr. Edwards,[53] for instance, remarks: "One can applaud the lucky gambler; but when he is lucky again tomorrow, and the next day, and the following day, one is entitled to become a little suspicious". Three other lines of evidence likewise lend support to the assertion that Mendels results are indeed too good to be true.[54]

Fisher's analysis gave rise to the Mendelian Paradox, a paradox that remains unsolved to this very day. Thus, on the one hand, Mendel's reported data are, statistically speaking, too good to be true; on the other, "everything we know about Mendel suggests that he was unlikely to engage in either deliberate fraud or in unconscious adjustment of his observations."[54] A number of writers have attempted to resolve this paradox.

One attempted explanation invokes confirmation bias.[55] Fisher accused Mendel's experiments as "biased strongly in the direction of agreement with expectation... to give the theory the benefit of doubt".[48] This might arise if he detected an approximate 3 to 1 ratio early in his experiments with a small sample size, and, in cases where the ratio appeared to deviate slightly from this, continued collecting more data until the results conformed more nearly to an exact ratio.

In his 2004, J.W. Porteous concluded that Mendel's observations were indeed implausible.[56] However, reproduction of the experiments has demonstrated that there is no real bias towards Mendel's data.[57]

Another attempt[54] to resolve the Mendelian Paradox notes that a conflict may sometimes arise between the moral imperative of a bias-free recounting of one's factual observations and the even more important imperative of advancing scientific knowledge. Mendel might have felt compelled to simplify his data in order to meet real, or feared, editorial objections.[53] Such an action could be justified on moral grounds (and hence provide a resolution to the Mendelian Paradox), since the alternativerefusing to complymight have retarded the growth of scientific knowledge. Similarly, like so many other obscure innovators of science,[53][28] Mendel, a little known innovator of working-class background, had to break through the cognitive paradigms and social prejudices of his audience.[53] If such a breakthrough could be best achieved by deliberately omitting some observations from his report and adjusting others to make them more palatable to his audience, such actions could be justified on moral grounds.[54]

Daniel L. Hartl and Daniel J. Fairbanks reject outright Fisher's statistical argument, suggesting that Fisher incorrectly interpreted Mendel's experiments. They find it likely that Mendel scored more than 10 progeny, and that the results matched the expectation. They conclude: "Fisher's allegation of deliberate falsification can finally be put to rest, because on closer analysis it has proved to be unsupported by convincing evidence."[51][58] In 2008 Hartl and Fairbanks (with Allan Franklin and AWF Edwards) wrote a comprehensive book in which they concluded that there were no reasons to assert Mendel fabricated his results, nor that Fisher deliberately tried to diminish Mendel's legacy.[59] Reassessment of Fisher's statistical analysis, according to these authors, also disprove the notion of confirmation bias in Mendel's results.[60][61]

Read the original here:
Gregor Mendel - Wikipedia

genetics | History, Biology, Timeline, & Facts …

Genetics, study of heredity in general and of genes in particular. Genetics forms one of the central pillars of biology and overlaps with many other areas, such as agriculture, medicine, and biotechnology.

Since the dawn of civilization, humankind has recognized the influence of heredity and applied its principles to the improvement of cultivated crops and domestic animals. A Babylonian tablet more than 6,000 years old, for example, shows pedigrees of horses and indicates possible inherited characteristics. Other old carvings show cross-pollination of date palm trees. Most of the mechanisms of heredity, however, remained a mystery until the 19th century, when genetics as a systematic science began.

Genetics arose out of the identification of genes, the fundamental units responsible for heredity. Genetics may be defined as the study of genes at all levels, including the ways in which they act in the cell and the ways in which they are transmitted from parents to offspring. Modern genetics focuses on the chemical substance that genes are made of, called deoxyribonucleic acid, or DNA, and the ways in which it affects the chemical reactions that constitute the living processes within the cell. Gene action depends on interaction with the environment. Green plants, for example, have genes containing the information necessary to synthesize the photosynthetic pigment chlorophyll that gives them their green colour. Chlorophyll is synthesized in an environment containing light because the gene for chlorophyll is expressed only when it interacts with light. If a plant is placed in a dark environment, chlorophyll synthesis stops because the gene is no longer expressed.

Genetics as a scientific discipline stemmed from the work of Gregor Mendel in the middle of the 19th century. Mendel suspected that traits were inherited as discrete units, and, although he knew nothing of the physical or chemical nature of genes at the time, his units became the basis for the development of the present understanding of heredity. All present research in genetics can be traced back to Mendels discovery of the laws governing the inheritance of traits. The word genetics was introduced in 1905 by English biologist William Bateson, who was one of the discoverers of Mendels work and who became a champion of Mendels principles of inheritance.

Read More on This Topic

heredity

clear in the study of genetics. Both aspects of heredity can be explained by genes, the functional units of heritable material that are found within all living cells. Every member of a species has a set of genes specific to that species. It is this set of genes that provides

Although scientific evidence for patterns of genetic inheritance did not appear until Mendels work, history shows that humankind must have been interested in heredity long before the dawn of civilization. Curiosity must first have been based on human family resemblances, such as similarity in body structure, voice, gait, and gestures. Such notions were instrumental in the establishment of family and royal dynasties. Early nomadic tribes were interested in the qualities of the animals that they herded and domesticated and, undoubtedly, bred selectively. The first human settlements that practiced farming appear to have selected crop plants with favourable qualities. Ancient tomb paintings show racehorse breeding pedigrees containing clear depictions of the inheritance of several distinct physical traits in the horses. Despite this interest, the first recorded speculations on heredity did not exist until the time of the ancient Greeks; some aspects of their ideas are still considered relevant today.

Hippocrates (c. 460c. 375 bce), known as the father of medicine, believed in the inheritance of acquired characteristics, and, to account for this, he devised the hypothesis known as pangenesis. He postulated that all organs of the body of a parent gave off invisible seeds, which were like miniaturized building components and were transmitted during sexual intercourse, reassembling themselves in the mothers womb to form a baby.

Aristotle (384322 bce) emphasized the importance of blood in heredity. He thought that the blood supplied generative material for building all parts of the adult body, and he reasoned that blood was the basis for passing on this generative power to the next generation. In fact, he believed that the males semen was purified blood and that a womans menstrual blood was her equivalent of semen. These male and female contributions united in the womb to produce a baby. The blood contained some type of hereditary essences, but he believed that the baby would develop under the influence of these essences, rather than being built from the essences themselves.

Aristotles ideas about the role of blood in procreation were probably the origin of the still prevalent notion that somehow the blood is involved in heredity. Today people still speak of certain traits as being in the blood and of blood lines and blood ties. The Greek model of inheritance, in which a teeming multitude of substances was invoked, differed from that of the Mendelian model. Mendels idea was that distinct differences between individuals are determined by differences in single yet powerful hereditary factors. These single hereditary factors were identified as genes. Copies of genes are transmitted through sperm and egg and guide the development of the offspring. Genes are also responsible for reproducing the distinct features of both parents that are visible in their children.

In the two millennia between the lives of Aristotle and Mendel, few new ideas were recorded on the nature of heredity. In the 17th and 18th centuries the idea of preformation was introduced. Scientists using the newly developed microscopes imagined that they could see miniature replicas of human beings inside sperm heads. French biologist Jean-Baptiste Lamarck invoked the idea of the inheritance of acquired characters, not as an explanation for heredity but as a model for evolution. He lived at a time when the fixity of species was taken for granted, yet he maintained that this fixity was only found in a constant environment. He enunciated the law of use and disuse, which states that when certain organs become specially developed as a result of some environmental need, then that state of development is hereditary and can be passed on to progeny. He believed that in this way, over many generations, giraffes could arise from deerlike animals that had to keep stretching their necks to reach high leaves on trees.

British naturalist Alfred Russel Wallace originally postulated the theory of evolution by natural selection. However, Charles Darwins observations during his circumnavigation of the globe aboard the HMS Beagle (183136) provided evidence for natural selection and his suggestion that humans and animals shared a common ancestry. Many scientists at the time believed in a hereditary mechanism that was a version of the ancient Greek idea of pangenesis, and Darwins ideas did not appear to fit with the theory of heredity that sprang from the experiments of Mendel.

Before Gregor Mendel, theories for a hereditary mechanism were based largely on logic and speculation, not on experimentation. In his monastery garden, Mendel carried out a large number of cross-pollination experiments between variants of the garden pea, which he obtained as pure-breeding lines. He crossed peas with yellow seeds to those with green seeds and observed that the progeny seeds (the first generation, F1) were all yellow. When the F1 individuals were self-pollinated or crossed among themselves, their progeny (F2) showed a ratio of 3:1 (3/4 yellow and 1/4 green). He deduced that, since the F2 generation contained some green individuals, the determinants of greenness must have been present in the F1 generation, although they were not expressed because yellow is dominant over green. From the precise mathematical 3:1 ratio (of which he found several other examples), he deduced not only the existence of discrete hereditary units (genes) but also that the units were present in pairs in the pea plant and that the pairs separated during gamete formation. Hence, the two original lines of pea plants were proposed to be YY (yellow) and yy (green). The gametes from these were Y and y, thereby producing an F1 generation of Yy that were yellow in colour because of the dominance of Y. In the F1 generation, half the gametes were Y and the other half were y, making the F2 generation produced from random mating 1/4 Yy, 1/2 YY, and 1/4 yy, thus explaining the 3:1 ratio. The forms of the pea colour genes, Y and y, are called alleles.

Mendel also analyzed pure lines that differed in pairs of characters, such as seed colour (yellow versus green) and seed shape (round versus wrinkled). The cross of yellow round seeds with green wrinkled seeds resulted in an F1 generation that were all yellow and round, revealing the dominance of the yellow and round traits. However, the F2 generation produced by self-pollination of F1 plants showed a ratio of 9:3:3:1 (9/16 yellow round, 3/16 yellow wrinkled, 3/16 green round, and 1/16 green wrinkled; note that a 9:3:3:1 ratio is simply two 3:1 ratios combined). From this result and others like it, he deduced the independent assortment of separate gene pairs at gamete formation.

Mendels success can be attributed in part to his classic experimental approach. He chose his experimental organism well and performed many controlled experiments to collect data. From his results, he developed brilliant explanatory hypotheses and went on to test these hypotheses experimentally. Mendels methodology established a prototype for genetics that is still used today for gene discovery and understanding the genetic properties of inheritance.

Mendels genes were only hypothetical entities, factors that could be inferred to exist in order to explain his results. The 20th century saw tremendous strides in the development of the understanding of the nature of genes and how they function. Mendels publications lay unmentioned in the research literature until 1900, when the same conclusions were reached by several other investigators. Then there followed hundreds of papers showing Mendelian inheritance in a wide array of plants and animals, including humans. It seemed that Mendels ideas were of general validity. Many biologists noted that the inheritance of genes closely paralleled the inheritance of chromosomes during nuclear divisions, called meiosis, that occur in the cell divisions just prior to gamete formation.

It seemed that genes were parts of chromosomes. In 1910 this idea was strengthened through the demonstration of parallel inheritance of certain Drosophila (a type of fruit fly) genes on sex-determining chromosomes by American zoologist and geneticist Thomas Hunt Morgan. Morgan and one of his students, Alfred Henry Sturtevant, showed not only that certain genes seemed to be linked on the same chromosome but that the distance between genes on the same chromosome could be calculated by measuring the frequency at which new chromosomal combinations arose (these were proposed to be caused by chromosomal breakage and reunion, also known as crossing over). In 1916 another student of Morgans, Calvin Bridges, used fruit flies with an extra chromosome to prove beyond reasonable doubt that the only way to explain the abnormal inheritance of certain genes was if they were part of the extra chromosome. American geneticist Hermann Joseph Mller showed that new alleles (called mutations) could be produced at high frequencies by treating cells with X-rays, the first demonstration of an environmental mutagenic agent (mutations can also arise spontaneously). In 1931 American botanist Harriet Creighton and American scientist Barbara McClintock demonstrated that new allelic combinations of linked genes were correlated with physically exchanged chromosome parts.

In 1908 British physician Archibald Garrod proposed the important idea that the human disease alkaptonuria, and certain other hereditary diseases, were caused by inborn errors of metabolism, suggesting for the first time that linked genes had molecular action at the cell level. Molecular genetics did not begin in earnest until 1941 when American geneticist George Beadle and American biochemist Edward Tatum showed that the genes they were studying in the fungus Neurospora crassa acted by coding for catalytic proteins called enzymes. Subsequent studies in other organisms extended this idea to show that genes generally code for proteins. Soon afterward, American bacteriologist Oswald Avery, Canadian American geneticist Colin M. MacLeod, and American biologist Maclyn McCarty showed that bacterial genes are made of DNA, a finding that was later extended to all organisms.

A major landmark was attained in 1953 when American geneticist and biophysicist James D. Watson and British biophysicists Francis Crick and Maurice Wilkins devised a double helix model for DNA structure. This model showed that DNA was capable of self-replication by separating its complementary strands and using them as templates for the synthesis of new DNA molecules. Each of the intertwined strands of DNA was proposed to be a chain of chemical groups called nucleotides, of which there were known to be four types. Because proteins are strings of amino acids, it was proposed that a specific nucleotide sequence of DNA could contain a code for an amino acid sequence and hence protein structure. In 1955 American molecular biologist Seymour Benzer, extending earlier studies in Drosophila, showed that the mutant sites within a gene could be mapped in relation to each other. His linear map indicated that the gene itself is a linear structure.

In 1958 the strand-separation method for DNA replication (called the semiconservative method) was demonstrated experimentally for the first time by American molecular biologist Matthew Meselson and American geneticist Franklin W. Stahl. In 1961 Crick and South African biologist Sydney Brenner showed that the genetic code must be read in triplets of nucleotides, called codons. American geneticist Charles Yanofsky showed that the positions of mutant sites within a gene matched perfectly the positions of altered amino acids in the amino acid sequence of the corresponding protein. In 1966 the complete genetic code of all 64 possible triplet coding units (codons), and the specific amino acids they code for, was deduced by American biochemists Marshall Nirenberg and Har Gobind Khorana. Subsequent studies in many organisms showed that the double helical structure of DNA, the mode of its replication, and the genetic code are the same in virtually all organisms, including plants, animals, fungi, bacteria, and viruses. In 1961 French biologist Franois Jacob and French biochemist Jacques Monod established the prototypical model for gene regulation by showing that bacterial genes can be turned on (initiating transcription into RNA and protein synthesis) and off through the binding action of regulatory proteins to a region just upstream of the coding region of the gene.

Technical advances have played an important role in the advance of genetic understanding. In 1970 American microbiologists Daniel Nathans and Hamilton Othanel Smith discovered a specialized class of enzymes (called restriction enzymes) that cut DNA at specific nucleotide target sequences. That discovery allowed American biochemist Paul Berg in 1972 to make the first artificial recombinant DNA molecule by isolating DNA molecules from different sources, cutting them, and joining them together in a test tube. These advances allowed individual genes to be cloned (amplified to a high copy number) by splicing them into self-replicating DNA molecules, such as plasmids (extragenomic circular DNA elements) or viruses, and inserting these into living bacterial cells. From these methodologies arose the field of recombinant DNA technology that presently dominates molecular genetics. In 1977 two different methods were invented for determining the nucleotide sequence of DNA: one by American molecular biologists Allan Maxam and Walter Gilbert and the other by English biochemist Fred Sanger. Such technologies made it possible to examine the structure of genes directly by nucleotide sequencing, resulting in the confirmation of many of the inferences about genes originally made indirectly.

In the 1970s Canadian biochemist Michael Smith revolutionized the art of redesigning genes by devising a method for inducing specifically tailored mutations at defined sites within a gene, creating a technique known as site-directed mutagenesis. In 1983 American biochemist Kary B. Mullis invented the polymerase chain reaction, a method for rapidly detecting and amplifying a specific DNA sequence without cloning it. In the last decade of the 20th century, progress in recombinant DNA technology and in the development of automated sequencing machines led to the elucidation of complete DNA sequences of several viruses, bacteria, plants, and animals. In 2001 the complete sequence of human DNA, approximately three billion nucleotide pairs, was made public.

A time line of important milestones in the history of genetics is provided in the table.

Classical genetics, which remains the foundation for all other areas in genetics, is concerned primarily with the method by which genetic traitsclassified as dominant (always expressed), recessive (subordinate to a dominant trait), intermediate (partially expressed), or polygenic (due to multiple genes)are transmitted in plants and animals. These traits may be sex-linked (resulting from the action of a gene on the sex, or X, chromosome) or autosomal (resulting from the action of a gene on a chromosome other than a sex chromosome). Classical genetics began with Mendels study of inheritance in garden peas and continues with studies of inheritance in many different plants and animals. Today a prime reason for performing classical genetics is for gene discoverythe finding and assembling of a set of genes that affects a biological property of interest.

Cytogenetics, the microscopic study of chromosomes, blends the skills of cytologists, who study the structure and activities of cells, with those of geneticists, who study genes. Cytologists discovered chromosomes and the way in which they duplicate and separate during cell division at about the same time that geneticists began to understand the behaviour of genes at the cellular level. The close correlation between the two disciplines led to their combination.

Plant cytogenetics early became an important subdivision of cytogenetics because, as a general rule, plant chromosomes are larger than those of animals. Animal cytogenetics became important after the development of the so-called squash technique, in which entire cells are pressed flat on a piece of glass and observed through a microscope; the human chromosomes were numbered using this technique.

Today there are multiple ways to attach molecular labels to specific genes and chromosomes, as well as to specific RNAs and proteins, that make these molecules easily discernible from other components of cells, thereby greatly facilitating cytogenetics research.

Microorganisms were generally ignored by the early geneticists because they are small in size and were thought to lack variable traits and the sexual reproduction necessary for a mixing of genes from different organisms. After it was discovered that microorganisms have many different physical and physiological characteristics that are amenable to study, they became objects of great interest to geneticists because of their small size and the fact that they reproduce much more rapidly than larger organisms. Bacteria became important model organisms in genetic analysis, and many discoveries of general interest in genetics arose from their study. Bacterial genetics is the centre of cloning technology.

Viral genetics is another key part of microbial genetics. The genetics of viruses that attack bacteria were the first to be elucidated. Since then, studies and findings of viral genetics have been applied to viruses pathogenic on plants and animals, including humans. Viruses are also used as vectors (agents that carry and introduce modified genetic material into an organism) in DNA technology.

Molecular genetics is the study of the molecular structure of DNA, its cellular activities (including its replication), and its influence in determining the overall makeup of an organism. Molecular genetics relies heavily on genetic engineering (recombinant DNA technology), which can be used to modify organisms by adding foreign DNA, thereby forming transgenic organisms. Since the early 1980s, these techniques have been used extensively in basic biological research and are also fundamental to the biotechnology industry, which is devoted to the manufacture of agricultural and medical products. Transgenesis forms the basis of gene therapy, the attempt to cure genetic disease by addition of normally functioning genes from exogenous sources.

The development of the technology to sequence the DNA of whole genomes on a routine basis has given rise to the discipline of genomics, which dominates genetics research today. Genomics is the study of the structure, function, and evolutionary comparison of whole genomes. Genomics has made it possible to study gene function at a broader level, revealing sets of genes that interact to impinge on some biological property of interest to the researcher. Bioinformatics is the computer-based discipline that deals with the analysis of such large sets of biological information, especially as it applies to genomic information.

The study of genes in populations of animals, plants, and microbes provides information on past migrations, evolutionary relationships and extents of mixing among different varieties and species, and methods of adaptation to the environment. Statistical methods are used to analyze gene distributions and chromosomal variations in populations.

Population genetics is based on the mathematics of the frequencies of alleles and of genetic types in populations. For example, the Hardy-Weinberg formula, p2 + 2pq + q2 = 1, predicts the frequency of individuals with the respective homozygous dominant (AA), heterozygous (Aa), and homozygous recessive (aa) genotypes in a randomly mating population. Selection, mutation, and random changes can be incorporated into such mathematical models to explain and predict the course of evolutionary change at the population level. These methods can be used on alleles of known phenotypic effect, such as the recessive allele for albinism, or on DNA segments of any type of known or unknown function.

Human population geneticists have traced the origins and migration and invasion routes of modern humans, Homo sapiens. DNA comparisons between the present peoples on the planet have pointed to an African origin of Homo sapiens. Tracing specific forms of genes has allowed geneticists to deduce probable migration routes out of Africa to the areas colonized today. Similar studies show to what degree present populations have been mixed by recent patterns of travel.

Another aspect of genetics is the study of the influence of heredity on behaviour. Many aspects of animal behaviour are genetically determined and can therefore be treated as similar to other biological properties. This is the subject material of behaviour genetics, whose goal is to determine which genes control various aspects of behaviour in animals. Human behaviour is difficult to analyze because of the powerful effects of environmental factors, such as culture. Few cases of genetic determination of complex human behaviour are known. Genomics studies provide a useful way to explore the genetic factors involved in complex human traits such as behaviour.

Some geneticists specialize in the hereditary processes of human genetics. Most of the emphasis is on understanding and treating genetic disease and genetically influenced ill health, areas collectively known as medical genetics. One broad area of activity is laboratory research dealing with the mechanisms of human gene function and malfunction and investigating pharmaceutical and other types of treatments. Since there is a high degree of evolutionary conservation between organisms, research on model organismssuch as bacteria, fungi, and fruit flies (Drosophila)which are easier to study, often provides important insights into human gene function.

Many single-gene diseases, caused by mutant alleles of a single gene, have been discovered. Two well-characterized single-gene diseases include phenylketonuria (PKU) and Tay-Sachs disease. Other diseases, such as heart disease, schizophrenia, and depression, are thought to have more complex heredity components that involve a number of different genes. These diseases are the focus of a great deal of research that is being carried out today.

Another broad area of activity is clinical genetics, which centres on advising parents of the likelihood of their children being affected by genetic disease caused by mutant genes and abnormal chromosome structure and number. Such genetic counseling is based on examining individual and family medical records and on diagnostic procedures that can detect unexpressed, abnormal forms of genes. Counseling is carried out by physicians with a particular interest in this area or by specially trained nonphysicians.

View original post here:
genetics | History, Biology, Timeline, & Facts ...