Category Archives: Genetics

Veritas Genetics, the start-up that can sequence a human genome for less than $600, ceases US operations and is in talks with potential buyers – CNBC

Veritas Genetics had big plans to lower the price of sequencing the human genome, making it on par with the price of buying an Apple Watch or a fancy dinner.

The company, which was the first in the world to map out a person's DNA for less than $1,000 back in 2016, just shared with customers via email that it is ceasing operations in the U.S.

"Due to an unexpected adverse financing situation, we are being forced to suspend our operations in the U.S. for the time being," the email, which was viewed by CNBC, reads. "We are currently assessing all paths forward, including strategic options."

The company also laid off the bulk of its employees based in the U.S., about 50 people, earlier this week, according to a source familiar with the company. The source asked not to be named because they were not authorized to speak for Veritas Genetics.

"I can clarify this temporarily affects U.S. operations only," a spokesperson for the company said. "All of the customers outside of the U.S. will continue to be served by Veritas Europe and Latin America."

Veritas, which made this year's CNBC Disruptor 50 list, hoped to expand to millions more consumers in the coming years by bringing down the price of whole genome sequencing to just a few hundred dollars. It raised more than $50 million in financing since it got its start in 2015.

But the company's investors, including Simcere Pharmaceutical and Lilly Asia Ventures, are based in China, at a time when the Trump administration is cracking down on Chinese firms making investments in U.S. companies. Earlier this year, the Committee on Foreign Investment in the United States,or CFIUS, forced a health-tech company called PatientsLikeMe to find a buyer after ordering its Chinese owner to divest its stake. PatientsLikeMe eventually sold to UnitedHealth.

For Veritas, it meant that new investors who were interested in the business got skittish because of the potential for oversight from CFIUS, according to the person familiar with the company. As a result, Veritas has also been in talks with potential acquirers in recent months, said the person.

If Veritas is able to figure out a path forward, it hopes to be competitive with companies such as Ancestry and 23andMe by offering more information for about the same price. 23andMe has dabbled with offering sequencing to its customers, but currently provides only genotyping services, meaning it looks at specific parts of the genome which are known to be associated with a certain condition or trait.

While 23andMe and Ancestry primarily sell tests for people interested in their ancestral composition and wellness traits, Veritas has long stressed that it's different because it provides potentially actionable insights into its users' health.

Veritas' decision to stop selling its tests in the U.S. comes as other consumer-facing DNA testing companies report that sales have slowed. One potential factor is that people have grown more concerned about protecting their privacy, especially in the wake of high-profile news events such as the Golden State Killer case. That stoked fears about whether individuals could be found and convicted for past crimes based on distant relatives' DNA.

But for Veritas, which bills itself as more of a medical company, sales of its tests have been increasing since it dropped its price in July, according to the person familiar.

Veritas in November experienced a security breach that included some customer information, the start-up confirmed to Bloomberg. The company stressed that only a handful of people were affected.

Follow @CNBCtech on Twitter for the latest tech industry news.

Read the original post:
Veritas Genetics, the start-up that can sequence a human genome for less than $600, ceases US operations and is in talks with potential buyers - CNBC

Insights into Asian Ancestry and Genetic Diversity – Technology Networks

The GenomeAsia 100K consortium analyzed the genomes of 1,739 people, which represents the widest coverage of genetic diversity in Asia to date.

The study covers 64 different countries and provides what the authors call the first comprehensive genetic map for Asia that will guide scientists in studying diseases unique to Asians, improve precision medicine and identify drugs that may carry higher risk of adverse reactions for certain ethnic groups.

Despite forming over 40 per cent of the worlds population, Asian people have previously accounted for only six per cent of the worlds recorded genome sequences.

The goal of GenomeAsia 100K, which launched in 2016, is to better understand the genome diversity of Asian ethnicities by sequencing 100,000 genomes of people living in Asia. It is a non-profit consortium hosted by Nanyang Technological University, Singapore (NTU Singapore), the only academic member. Its three other members are Macrogen based in South Korea, Genentech, a member of the Roche Group in United States, and MedGenome from India/US.

NTU Professor Stephan C. Schuster, the consortiums scientific chairman and a co-leader of the study, explained the significance of GenomeAsia 100Ks initial findings on the vast genomic diversity in Asia: To put it into context, imagine we looked at all people of European and based on the level of their genetic diversity, observed that they could all be grouped into just one ancestral lineage or population. Now, if we took that same approach with our new data from people of Asian, then based on the much higher levels of genetic diversity observed we would say that there are 10 different ancestral groups or lineages in Asia.

Schuster added, GenomeAsia 100K is a significant and far-reaching project that will affect the well-being and health of Asians worldwide, and it is a great honour for Singapore and NTU to be hosting it.

Executive Chairman of GenomeAsia 100K, Mahesh Pratapneni said, The publication of this pilot study is a first milestone for GenomeAsia 100K, which is an unprecedented collaboration between academia and industry leaders in the field of genomics. We are certain more partners will join GenomeAsia 100K to accelerate medical breakthroughs for people of Asian heritage.

Chairman and CEO of MedGenome, the largest genomics and molecular diagnostics provider in South Asia with facilities in the US, Singapore and across India, Sam Santhosh, said, "We are excited that over 1000 whole genome sequence data from the Indian sub-continent will now be available to researchers; this is an initial step in covering the underrepresented geographies."

Prof Jeong-Sun Seo, at Seoul National University Bundang Hospital Consortium scientific co-chair and Chairman of Macrogen, said, I hope this Asian-focused study serves as a stepping stone for the democratization of health care and precision medicine in Asia.

How the database of Asian genomes was formed

Over the course of the last three decades prior to the pilot project, thousands of blood and saliva samples have already been collected by scientists and anthropologists from donors across Asia in hopes that one day, a deeper analysis to gain insights into the Asian community can be done.

Of particular interest were participants from remote and isolated communities, who have long been the subjects of study by anthropologists but have not yet undergone genomic analysis, until the GenomeAsia 100K project was kickstarted.

The pilot study included 598 genomes from India, 156 from Malaysia, 152 from South Korea, 113 from Pakistan, 100 from Mongolia, 70 from China, 70 from Papua New Guinea, 68 from Indonesia, 52 from the Philippines, 35 from Japan, and 32 from Russia.

Genomic DNA extracted from the blood and saliva samples was then sequenced in laboratories of the four consortium members in the US, India, South Korea and Singapore. The digital sequencing data were subsequently sent to Singapore for processing and storage.

Singapore was selected by the consortium as the host, as the country offered good travel connections for collaborating scientists, strong supercomputing facilities to crunch the data, and the required cybersecurity standards in its data centre for handling sensitive genetic data.

The combined data was compiled and analyzed by NTU scientists, including Assistant Professor Hie Lim Kim, a population genomics expert at the Asian School of The Environment, with the help of the National Supercomputing Centre Singapore (NSCC) and international collaborators.

Different Asian ethnic groups respond differently to mainstream drugs

Every person has approximately 3.2 billion different nucleotides, or building blocks, in their genome, which form their DNA code.

Its estimated that for the genomes of any two people, 99.9 per cent of this code is the same and on average, 0.1 per cent or three million nucleotides, are different between them.

This genetic variance help humankind colonize the most diverse environments on the planet and make it resilient to disease, but it also results in differential response to many medicines.

Genetic variance is the reason we are distinctively different from each other including differences in the diseases that each of us suffer from during our lifetimes. Understanding these differences is the most important source of clues that we have for driving the discovery of innovative new medicines, said Dr Andrew Peterson, an author of the paper and an expert in the use of genetics to drive drug discovery.

Peterson was head of Molecular Biology at Genentech while this work was being carried out, is now Chief Scientific Officer at MedGenome, where he leads drug discovery efforts at MedGenomes Seven Rivers Genomic Medicines division.

The frequencies of known genetic variants related to adverse drug response were analyzed for the genomes collected in this study.

For example, warfarin, a common anticoagulant drug prescribed to treat cardiovascular diseases, likely has a higher than usual risk of adverse drug response for people carrying a certain genetic variant. This particular genetic variant has a higher frequency to appear in those with North Asian ancestry, such as Japanese, Korean, Mongolian or Chinese.

Using data analysis, scientists can now screen populations to identify groups that are more likely to have a negative predisposition to a specific drug.

Knowing a persons population group and their predisposition to drugs is extremely important if personalized medicine is to work, stressed Prof Schuster: For precision medicine to be precise, you need to know precisely who you are.

Hie Lim Kim, who leads the projects efforts in population genetics, added: Only by sequencing the entire genome of an individual can a persons ancestry and genetic background be known. Their genome explains why some people are afflicted by certain diseases while others arent. Scientists know that there is no single drug that works well for everybody and our latest findings not only reinforce this, but suggest how specific groups could be harmed by specific medicines.

Moving forward, the GenomeAsia 100K will continue to collect and analyze up to 100,000 genomes from all of Asias geographic regions, in order to fill in the gaps on the worlds genetic map and to account for Asias unexpected genetic diversity.

Reference

GenomeAsia100K Consortium. (2019) The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. DOI: https://doi.org/10.1038/s41586-019-1793-z

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read the original:
Insights into Asian Ancestry and Genetic Diversity - Technology Networks

Veritas Genetics suspends its US operations – STAT

Unlock this article by subscribing to STAT Plus. To get you started, enjoy 50% off your first 3 months!

STAT Plus is STAT's premium subscription service for in-depth biotech, pharma, policy, and life science coverage and analysis.Our award-winning team covers news on Wall Street, policy developments in Washington, early science breakthroughs and clinical trial results, and health care disruption in Silicon Valley and beyond.

See more here:
Veritas Genetics suspends its US operations - STAT

Press Registration for the 2020 ACMG Annual Clinical Genetics Meeting Is Now Open – PRNewswire

BETHESDA, Md., Dec. 4, 2019 /PRNewswire/ --The American College of Medical Genetics and Genomics (ACMG) heads to a new destination in sunny San Antonio, Texas in 2020. Named one of the fastest growing meetings in the USA by Trade Show Executive Magazine, the ACMG Annual Clinical Genetics Meeting continues to provide groundbreaking research and news about the latest advances in genetics, genomics and personalized medicine. To be held March 17-21, the 2020 ACMG Annual Meeting will feature more than 40 scientific sessions, 3 Short Courses, workshops, TED-Style talks and satellite symposia, and over 800 poster presentations on emerging areas of genetic and genomic medicine.

Interview those at the forefront in medical genetics and genomics, connect in person with new sources and get story ideas on the clinical practice of genetics and genomics in healthcare today and for the future. Learn how genetics and genomics research is being integrated and applied into medical practice.

Topics include gene editing, cancer genetics, molecular genomics, exome sequencing, pre- and perinatal genetics, biochemical/metabolic genetics, genetic counseling, health services and implementation, legal and ethical issues, therapeutics and more.

Credentialed media representatives on assignment are invited to attend and cover the ACMG Annual Meeting on a complimentary basis. Contact Kathy Moran, MBA at kmoran@acmg.net for the Press Registration Invitation Code, which will be needed to register at http://www.acmgmeeting.net.

Abstracts of presentations will be available online in January 2020. A few 2020 ACMG Annual Meeting highlights include:

Program Highlights:

Cutting Edge Scientific Concurrent Sessions:

Three half-day Genetics Short Courses on Monday, March 16 and Tuesday, March 17:

Photo/TV Opportunity: The ACMG Foundation for Genetic and Genomic Medicine will present bicycles to local children with rare genetic diseases at the Annual ACMG Foundation Day of Caring on Friday, March 20 from 10:30 AM 11:00 AM at the Henry B. Gonzlez Convention Center.

Social Media for the 2020 ACMG Annual Meeting: As the ACMG Annual Meeting approaches, journalists can stay up to date on new sessions and information by following the ACMG social media pages on Facebook,Twitter and Instagram and by usingthe hashtag #ACMGMtg20 for meeting-related tweets and posts.

Note be sure to book your hotel reservations early.

The ACMG Annual Meeting website has extensive information at http://www.acmgmeeting.net.

About the American College of Medical Genetics and Genomics (ACMG) and the ACMG Foundation for Genetic and Genomic Medicine (ACMGF)

Founded in 1991, the American College of Medical Genetics and Genomics (ACMG) is the only nationally recognized medical society dedicated to improving health through the clinical practice of medical genetics and genomics and the only medical specialty society in the US that represents the full spectrum of medical genetics disciplines in a single organization. The ACMG is the largest membership organization specifically for medical geneticists, providing education, resources and a voice for more than 2,300 clinical and laboratory geneticists, genetic counselors and other healthcare professionals, nearly 80% of whom are board certified in the medical genetics specialties. ACMG's mission is to improve health through the clinical and laboratory practice of medical genetics as well as through advocacy, education and clinical research, and to guide the safe and effective integration of genetics and genomics into all of medicine and healthcare, resulting in improved personal and public health. Four overarching strategies guide ACMG's work: 1) to reinforce and expand ACMG's position as the leader and prominent authority in the field of medical genetics and genomics, including clinical research, while educating the medical community on the significant role that genetics and genomics will continue to play in understanding, preventing, treating and curing disease; 2) to secure and expand the professional workforce for medical genetics and genomics; 3) to advocate for the specialty; and 4) to provide best-in-class education to members and nonmembers. Genetics in Medicine, published monthly, is the official ACMG peer-reviewed journal. ACMG's website (www.acmg.net) offers resources including policy statements, practice guidelines, educational programs and a 'Find a Genetic Service' tool. The educational and public health programs of the ACMG are dependent upon charitable gifts from corporations, foundations and individuals through the ACMG Foundation for Genetic and Genomic Medicine.

Kathy Moran, MBAkmoran@acmg.net

SOURCE American College of Medical Genetics and Genomics

http://www.acmg.net

View original post here:
Press Registration for the 2020 ACMG Annual Clinical Genetics Meeting Is Now Open - PRNewswire

UK-first study to assess role of whole-genome screening in primary care – The Institute of Cancer Research

Image from Pixabay.

People in the UK will for the first time have their entire genetic code read from samples taken at a GP practice as part of a pioneering study to assess the potential benefits of screening for gene faults that increase the risk of disease.

Researchers aim to screen the genomes of around a thousand GP patients in London to assess the feasibility of testing for faulty genes that increase the risk of cancer and heart disease, and how acceptable screening is to patients.

The initiative, launched today (Friday), will aim to establish whether whole-genome sequencing in a healthy population can have a significant impact on peoples health by helping diagnose cancer, heart disease and other illnesses much earlier.

The new study is the first in the UK to assess whether whole-genome sequencing can be used to screen for a range of genes linked to disease or response to medicines, and what effect this has on patients healthcare. If successful, it could be a key step towards much more routine use of genetic testing to predict and manage patients future health in the NHS.

The research, called the 90S Study, is led by Professor Ros Eeles, a world-leading expert in cancer genetics at The Institute of Cancer Research, London, and The Royal Marsden NHS Foundation Trust, and Dr Michael Sandberg, a GP at 90 Sloane Street a private GP practice from which patient volunteers will be recruited.

The study involves further experts from The Institute of Cancer Research (ICR) and The Royal Marsden plus expert cardiologists at Royal Brompton Hospitaland is under the auspices of the 90 Sloane Street Genetic centre, a collaborative team of five consultant geneticists.

The first 20 patients will be evaluated for the psychological effects of genetic screening as part of a study funded by donations to The Institute of Cancer Research (ICR) and through support from the NIHR Biomedical Research Centre at The Royal Marsden and the ICR,and 90 Sloane St.

The study will then be expanded to around a thousand patients initially recruited at 90 Sloane St, with NHS GP practices lined up to join the pilot in a subsequent stage.

There has been huge progress over the last 25 years in identifying inherited causes of disease, such as BRCA gene faults predisposing to breast and ovarian cancer, and Lynch syndrome gene alterations which increase the risk of bowel and uterine cancer. In cardiovascular disease, familial hypercholesterolaemia causes inherited high cholesterol, variants in the long QT genes can cause dangerous heart rhythm disturbances and other gene faults can cause heart muscle disorders.

Advances in the technology to read peoples DNA have made it so much faster and cheaper that it is now practical to screen patients by sequencing their whole genome. There is considerable public interest in genetics, as shown by the growing popularity of unreliable and simplistic direct-to-consumer tests. But until now, there has been no thorough investigation of how properly controlled and validated genomic medicine could be integrated into primary care in the UK.

In the new initiative, researchers will analyse the entire genetic code of people attending a GP surgery and report on around 600 separate genetic changes known to be associated with disease, or in some cases affect how patients respond to or metabolise certain medicines. The study is looking only for actionable gene alterations which if detected would alter choices for an individual such as lifestyle improvements, specific screening and sometimes targeted treatments. It will not report on risk of diseases for which there are no current actions that can be taken.

The study will assess how frequently genetic alterations are picked up by whole-genome sequencing in people with a family history of cancer or heart disease compared with people who do not half of the volunteers will be from each group.

The researchers aim to expand the study to incorporate other partner GP practices and widen the possibility for people to take part. Evidence gathered will inform decision making around the use of whole-genome sequencing in a primary care setting in both the NHS and private practice.

The initiative differs fundamentally from direct-to-consumer testing in that patients will receive genetic screening as part of a detailed medical review. All patients will also have an on-site echocardiogram a heart ultrasound to provide crucial extra information and to reassure those with some genetic risk of heart disease but no signs that this is actually affecting their health.

The project leaders are not suggesting that future population genetic screening would necessarily need to be done with this level of resources and they will be looking for ways of simplifying and improving processes to be suitable for large-volume NHS screening.

Study leader Professor Ros Eeles, Professor of Oncogeneticsat The Institute of Cancer Research, London, and Consultant in Clinical Oncology and Oncogenetics at The Royal Marsden NHS Foundation Trust, said:

Weve seen incredible progress over the last quarter of a century in identifying genetic alterations that are linked to the risk of disease, opening up the possibility to intervene early to improve patients health.

Our new initiative takes cutting-edge science on the genetics of disease into a primary care setting, by sequencing patients entire genomes from samples taken at a GP surgery and testing for the presence of 600 key genetic alterations. What we hope is that genetic screening is practical as a way of picking up genes associated with cancer and heart disease, is psychologically acceptable to patients, and can alter the way they are managed by their GP.

The project will give us crucial information about whether genetic screening in primary care could be feasible, and how we should go about seeking to implement it within the NHS.

Dr Michael Sandberg, General Practitioner at 90 Sloane Street and Co-Principal Investigator for the 90S Study, said:

Genetic information will help us to target and identify high-risk patients, so as to find diseases at an earlier stage and give greater precision to screening and health optimisation in general practice.

Working in partnership with experts at The Institute of Cancer Research and The Royal Marsden means we can integrate whole-genome sequencing into screening in primary care with the genetic support that is essential. There is no doubt that primary care is the future setting for whole-genome screening which will be carried out by specially trained practice nurses supported by GPs and consultant geneticists.

The rest is here:
UK-first study to assess role of whole-genome screening in primary care - The Institute of Cancer Research

Revised genetic index will help boost longevity – The Scottish Farmer

The new dairy proofs boast a revamped genetic index for cattle lifespan, enabling milk producers to identify bulls whose offspring will be more healthy and productive will help predict more accurate longevity in additional days rather than lactations.

Previously expressed in lactations which meant very little difference between the best and worst animals, the indexs scale has now been increased to approximately -305 to +305 days enabling producers to make more precise decisions.

Marco Winters, head of animal genetics with AHDB Dairy, said: The new figures give producers a more meaningful prediction of the extra lifetime expected from a bulls daughters and make a greater distinction between individual bulls.

Lifespan reflects many contributory factors, ranging from fertility and somatic cell counts to legs, feet and udder conformation. The index has a strong correlation with an animals average daily lifetime yield, which is a key contributor to its lifetime profitability.

Producers have made progress in their cows lifespan, which has steadily increased since LS was included in AHDBs Profitable Lifetime Index (PLI) in 1999 (see graph).

By helping to differentiate individual sires and moving to a larger and more meaningful scale, we feel confident we can further increase genetic progress for this trait, so cutting a herds replacement rate and its costs of heifer rearing, he said.

Lifespan Index Q and A

1. Why is lifespan so important?

It is estimated to cost more than 1800 to rear a Holstein dairy heifer from birth to the point of calving. Around 70% of farmers pay back this investment during the animals second lactation. More precisely, the average number of days at which payback occurs is a staggering 530 after first calving! Any measures which can therefore be taken to extend an animals productive life beyond this point will help improve its return on the large initial investment. Using the Lifespan Index when breeding cattle can help producers improve their herds survival rates by hundreds of days.

2. How does the new scale work?

The new scale for Lifespan Index (LS) will run from around -305 days to +305 days, with positive figures being desirable. Daughters of a +305 Lifespan Index bull are predicted to live, on average, 305 days longer than daughters of a sire whose index is zero. Equally, they are predicted to live 610 days longer than daughters of a -305 LS bull. As with all UK genetic indexes, zero represents the average.

3. How are Lifespan Indexes calculated?

The Lifespan Index is calculated from actual daughter survival, when that information is available. When it is not, it is either calculated from the animals own genotype (if it has a genomic index), or from predictive traits such as type traits (legs, feet and udders) and Somatic Cell Count Index, all of which are correlated with lifespan. Where necessary, information on ancestors lifespan will also be included in the calculation of the index. This and all other predictors will diminish in their importance as the animal acquires progeny lifespan information of its own.

4. Arent many animals culled for low production rather than survivability?

An important feature of the Lifespan Index is that it predicts involuntary rather than voluntary culling. As there is such a strong relationship between milk production and lifespan (because low producers are generally culled earlier from the herd), Lifespan Index is corrected for milk production. This correction ensures the index is more a measure of daughters ability to survive than of their failure to produce milk, which itself would be apparent from Predicted Transmitting Abilities (PTAs) for production.

Read the original post:
Revised genetic index will help boost longevity - The Scottish Farmer

Raiders Of The Lost Crops: Scientists Race Against Time To Save Genetic Diversity – NPR

Members of the Crop Wild Relatives project from the Crop Trust joined their research partners in Nepal on an expedition to collect wild relatives of rice, okra and eggplant in October 2017. Hannes Dempewolf of the Crop Trust says the elephants kept the researchers high enough off the ground that they didn't have to worry about any snakes that might be lurking. L.M. Salazar/Crop Trust hide caption

Members of the Crop Wild Relatives project from the Crop Trust joined their research partners in Nepal on an expedition to collect wild relatives of rice, okra and eggplant in October 2017. Hannes Dempewolf of the Crop Trust says the elephants kept the researchers high enough off the ground that they didn't have to worry about any snakes that might be lurking.

Call it a tale of science and derring-do. An international team of researchers has spent six years fanning across the globe, gathering thousands of samples of wild relatives of crops. Their goal: to preserve genetic diversity that could help key crops survive in the face of climate change. At times, the work put these scientists in some pretty extreme situations.

Just ask Hannes Dempewolf. Two years ago, the plant geneticist found himself in a rainforest in Nepal, at the foot of the Himalayas. He was riding on the back of an elephant to avoid snakes on the ground and to scare away any tigers that might be lurking about. Then all of a sudden came an attack from above.

"There were leeches dropping on us from all directions," Dempewolf recalls "bloodsucking leeches."

Now, this is far from where he thought he'd be when he got his Ph.D. But as a senior scientist and head of global initiatives at the Crop Trust, Dempewolf has been overseeing an ambitious international collaboration. More than 100 scientists in 25 countries have been venturing out to collect wild relatives of domesticated crops like lentils, potatoes, chickpeas and rice that people rely on around the world. The Crop Trust has just released a report detailing the results of this massive effort, which secured more than 4,600 seed samples of 371 wild relatives of key domesticated crops that the world relies on.

The "collecting teams are heading out into wild places and hard-to-reach corners within their countries to try to find and track down some of these wild species that have either never been collected before or are very underrepresented in seed banks," Dempewolf explains. So he says it's not surprising that many of the stories coming out of the project have an Indiana Jones-like sense of adventure to them.

Take, for example, an effort to collect Oryza glumaepatula, a wild rice species found in Latin America. Griselda Arrieta Espinoza, a crop genetics and biotechnology researcher at the University of Costa Rica, was part of a collecting team that set out to northern Costa Rica to collect a particular population of this wild rice that grows in a river. "Collecting it was quite the adventure," she tells me in Spanish because the river is also home to crocodiles.

While the effort was dangerous, Arrieta says it was also worth it, because Oryza glumaepatula is known to be resistant to a fungus that attacks domesticated rice grown around the world. And she notes that researchers in Brazil have already managed to cross Oryza glumaepatula with domesticated rice to improve crop yields.

Jamal Mabrouki, a technician with the International Center for Agricultural Research in the Dry Areas, works on a grasspea breeding project at ICARDA's facilities at Marchouch station, Morocco. Michael Major/Crop Trust hide caption

Jamal Mabrouki, a technician with the International Center for Agricultural Research in the Dry Areas, works on a grasspea breeding project at ICARDA's facilities at Marchouch station, Morocco.

The overall goal of the Crop Trust project is to make sure that this kind of valuable genetic diversity is preserved in seed banks before wild crop relatives disappear as urban development encroaches on once wild habitats. Dempewolf says that this is already happening.

"Some of the populations that the [research teams] were hoping to collect, when they reached the areas where they had seen populations before, they had disappeared," Dempewolf says.

Steven Tanksley, a professor emeritus of plant breeding at Cornell University, who was not involved in the Crop Trust project, praised the effort. He notes that the domesticated crops we eat today were selected from wild plants over thousands of years. He says this "natural reservoir of diversity ... has allowed plant breeding to attempt to keep pace with the demands of the growing human population."

That diversity took shape over millions of years, molded by natural selection, so "when you lose it, you really can't repeat that process," says Tanksley, who is also chief technology officer for Nature Source Improved Plants, which focuses on the genetic improvement of plants.

In the past, he notes, breeders have used wild crop relatives to improve disease resistance in many domesticated crops, including tomatoes, potatoes, rice and wheat.

A growing global population and changing environmental conditions because of climate change present urgent new challenges for crop breeders, Tanksley says.

"If we're going to have a sustainable world with a sustainable environment, we have to produce a lot more food per hectare than we ever have in the past," he says, adding, "I think people don't really grasp that the urgency of it."

And without the genetic diversity of wild crop relatives, he says, the world will have little chance of keeping up with growing demand for food.

Visit link:
Raiders Of The Lost Crops: Scientists Race Against Time To Save Genetic Diversity - NPR

Kim Kardashian West’s battle with psoriatic arthritis: Will understanding the genetics of the autoimmune disorder point to a cure? – Genetic Literacy…

In September, the world of entertainment news buzzed with word that Kim Kardashian West tested positive for lupus and rheumatoid arthritis. The star underwent further tests, however, resulting in a diagnosis of psoriatic arthritis instead. While all three autoimmune disorders share some signs and symptoms, psoriatic arthritis is generally considered to have a better prognosis than lupus. That said, the conditions can co-exist and lupus has gotten a reputation for being difficult to diagnose, especially in the absence of the butterfly-shaped rash on ones cheeks and nose.

Im so relieved. The pain is going to come and go sometimes, but I can manage it and this is not going to stop me, Kardashian said in an article in response to receiving her psoriatic arthritis diagnosis. Her relief at not having lupus is understandable, given that lupus can affect a greater number of organs and systems in the body and is considered to be life-threatening.

Lupus, rheumatoid arthritis and psoriatic arthritis are examples of some conditions that are often considered when an individual is undergoing diagnosis for certain autoimmune diseases, because they share several symptoms and can trigger positive results in the same diagnostic tests. Kim Kardashian received the initial news that she had lupus or rheumatoid arthritis likely due to positive antinuclear antibody (ANA) test results.

An ANA is a blood test ordered when a doctor, usually a rheumatologist, suspects that a patient has a particular kind of autoimmune disorder. This test checks for the existence of autoantibodies, which are produced when a persons body is, in effect, attacking itself and several areas of the body are affected. A positive ANA test usually indicates that the doctors suspicions are confirmed, and then other factors (like medical and family history) need to be considered and more tests done to arrive at a diagnosis.

Psoriatic arthritis is usually diagnosed between the ages of 20 and 50, and occurs in women and men equally. While there is no cure, appropriate and early treatment can help prevent major damage to affected parts of the body.

Psoriatic arthritis appears in a minority of individuals who have already been diagnosed with psoriasis, an autoimmune skin condition with which Kim Kardashian and her mother, Kris Jenner, had already been diagnosed. Psoriatic arthritis affects around 520,000 individuals in the United States alone.

The autoimmune condition is believed to be caused by a combination of genetic factors and environmental triggers. So while some people inherit psoriatic arthritis-related genes, only a subset of those individuals will go on to develop the condition. In these cases, the disease could be triggered by other illnesses or infections, various forms of extreme stress, poor diet, smoking, and so on.

Around 40 percent of psoriatic arthritis patients have one or more close family members with psoriasis or psoriatic arthritis diagnosis, which strongly indicates that the disease is hereditary. Interestingly, recent research has suggested that psoriasis patients who go on to develop psoriatic arthritis have a different genetic profile than those who do not. And the most well-studied of the psoriatic arthritis genes belong to a family of genes called the human leukocyte antigen (HLA) complex, which help the body tell the difference between its own proteins and viral or bacterial proteins.

According to Genetics Home Reference by the U.S. National Library of Medicine, Variations of several HLA genes seem to affect the risk of developing psoriatic arthritis, as well as the type, severity, and progression of the condition.

Ive been feeling so tired, so nauseous, and my hands are really getting swollen. I feel like I literally am falling apart. My hands are numb, Kardashian said on a recent episode of Keeping Up with the Kardashians.

These kinds of descriptions are common in all three conditions lupus, rheumatoid arthritis, and psoriatic arthritis though each patient presents with a different array of symptoms, and all with varying degrees of severity. The main symptoms of psoriatic arthritis are pain, stiffness, and swelling in affected joints, along with chronic fatigue. Joints near the end of the fingertips and tips of the toes are often affected, as are bones in the spine.

The symptoms of psoriatic arthritis tend to worsen over time, though some patients experience periods of remission when symptoms temporarily improve. Compared to rheumatoid arthritis, psoriatic arthritis is more likely to cause swelling in the smallest joints of the fingers and toes, foot pain (in the heel and/or sole of the foot), and lower back pain caused by inflammation in vertebral joints. Patients with psoriatic arthritis are also more likely to experience symptoms on one side of the body or in different appendages on each side (in other words, it tends to be an asymmetric disease), whereas patients with rheumatoid arthritis are more likely to experience symptoms that affect both sides of the body equally (symmetric disease).

Most if not all patients with psoriatic arthritis also have psoriasis, an autoimmune condition that causes red, scaly patches of skin that can be itchy, painful and embarrassing. Psoriasis usually precedes the onset of psoriatic arthritis by several years. People with psoriatic arthritis commonly experience fingernail changes, too, such as the formation of a pitted or ridged nail surface, or the nails become separated from the nail beds.

There are several treatment options for psoriatic arthritis, which include nonsteroidal anti-inflammatory drugs (NSAIDs) to reduce inflammation and pain, immunosuppressants to suppress the immune system, disease-modifying antirheumatic drugs (DMARDs) to slow the progression of the disease, and newer medications that minimize the activity of certain enzymes involved in the inflammatory process. Treatment plans may also involve steroid injections administered directly into affected joints, or joint replacement surgery in cases where the disease has significantly progressed.

Kristen Hovet covers genetics, medical innovations and the intersection of sociology and culture. The North Dakota native is based in Vancouver, Canada, where she is working on a masters degree in health communication at Washington State University. Follow her on her website or Twitter @kristenhovet

More:
Kim Kardashian West's battle with psoriatic arthritis: Will understanding the genetics of the autoimmune disorder point to a cure? - Genetic Literacy...

China Uses DNA to Map Faces, With Help From the West – The New York Times

TUMXUK, China In a dusty city in the Xinjiang region on Chinas western frontier, the authorities are testing the rules of science.

With a million or more ethnic Uighurs and others from predominantly Muslim minority groups swept up in detentions across Xinjiang, officials in Tumxuk have gathered blood samples from hundreds of Uighurs part of a mass DNA collection effort dogged by questions about consent and how the data will be used.

In Tumxuk, at least, there is a partial answer: Chinese scientists are trying to find a way to use a DNA sample to create an image of a persons face.

The technology, which is also being developed in the United States and elsewhere, is in the early stages of development and can produce rough pictures good enough only to narrow a manhunt or perhaps eliminate suspects. But given the crackdown in Xinjiang, experts on ethics in science worry that China is building a tool that could be used to justify and intensify racial profiling and other state discrimination against Uighurs.

In the long term, experts say, it may even be possible for the Communist government to feed images produced from a DNA sample into the mass surveillance and facial recognition systems that it is building, tightening its grip on society by improving its ability to track dissidents and protesters as well as criminals.

Some of this research is taking place in labs run by Chinas Ministry of Public Security, and at least two Chinese scientists working with the ministry on the technology have received funding from respected institutions in Europe. International scientific journals have published their findings without examining the origin of the DNA used in the studies or vetting the ethical questions raised by collecting such samples in Xinjiang.

In papers, the Chinese scientists said they followed norms set by international associations of scientists, which would require that the men in Tumxuk (pronounced TUM-shook) gave their blood willingly. But in Xinjiang, many people have no choice. The government collects samples under the veneer of a mandatory health checkup program, according to Uighurs who have fled the country. Those placed in internment camps two of which are in Tumxuk also have little choice.

The police prevented reporters from The New York Times from interviewing Tumxuk residents, making verifying consent impossible. Many residents had vanished in any case. On the road to one of the internment camps, an entire neighborhood had been bulldozed into rubble.

Growing numbers of scientists and human rights activists say the Chinese government is exploiting the openness of the international scientific community to harness research into the human genome for questionable purposes.

Already, China is exploring using facial recognition technology to sort people by ethnicity. It is also researching how to use DNA to tell if a person is a Uighur. Research on the genetics behind the faces of Tumxuks men could help bridge the two.

The Chinese government is building essentially technologies used for hunting people, said Mark Munsterhjelm, an assistant professor at the University of Windsor in Ontario who tracks Chinese interest in the technology.

In the world of science, Dr. Munsterhjelm said, theres a kind of culture of complacency that has now given way to complicity.

Sketching someones face based solely on a DNA sample sounds like science fiction. It isnt.

The process is called DNA phenotyping. Scientists use it to analyze genes for traits like skin color, eye color and ancestry. A handful of companies and scientists are trying to perfect the science to create facial images sharp and accurate enough to identify criminals and victims.

The Maryland police used it last year to identify a murder victim. In 2015, the police in North Carolina arrested a man on two counts of murder after crime-scene DNA indicated the killer had fair skin, brown or hazel eyes, dark hair, and little evidence of freckling. The man pleaded guilty.

Despite such examples, experts widely question phenotypings effectiveness. Currently, it often produces facial images that are too smooth or indistinct to look like the face being replicated. DNA cannot indicate other factors that determine how people look, such as age or weight. DNA can reveal gender and ancestry, but the technology can be hit or miss when it comes to generating an image as specific as a face.

Phenotyping also raises ethical issues, said Pilar Ossorio, a professor of law and bioethics at the University of Wisconsin-Madison. The police could use it to round up large numbers of people who resemble a suspect, or use it to target ethnic groups. And the technology raises fundamental issues of consent from those who never wanted to be in a database to begin with.

What the Chinese government is doing should be a warning to everybody who kind of goes along happily thinking, How could anyone be worried about these technologies? Dr. Ossorio said.

With the ability to reconstruct faces, the Chinese police would have yet another genetic tool for social control. The authorities have already gathered millions of DNA samples in Xinjiang. They have also collected data from the hundreds of thousands of Uighurs and members of other minority groups locked up in detention camps in Xinjiang as part of a campaign to stop terrorism. Chinese officials have depicted the camps as benign facilities that offer vocational training, though documents describe prisonlike conditions, while testimonies from many who have been inside cite overcrowding and torture.

Even beyond the Uighurs, China has the worlds largest DNA database, with more than 80 million profiles as of July, according to Chinese news reports.

If I were to find DNA at a crime scene, the first thing I would do is to find a match in the 80 million data set, said Peter Claes, an imaging specialist at the Catholic University of Leuven in Belgium, who has studied DNA-based facial reconstruction for a decade. But what do you do if you dont find a match?

Though the technology is far from accurate, he said, DNA phenotyping can bring a solution.

To unlock the genetic mysteries behind the human face, the police in China turned to Chinese scientists with connections to leading institutions in Europe.

One of them was Tang Kun, a specialist in human genetic diversity at the Shanghai-based Partner Institute for Computational Biology, which was founded in part by the Max Planck Society, a top research group in Germany.

The German organization also provided $22,000 a year in funding to Dr. Tang because he conducted research at an institute affiliated with it, said Christina Beck, a spokeswoman for the Max Planck Society. Dr. Tang said the grant had run out before he began working with the police, according to Dr. Beck.

Another expert involved in the research was Liu Fan, a professor at the Beijing Institute of Genomics who is also an adjunct assistant professor at Erasmus University Medical Center in the Netherlands.

Both were named as authors of a 2018 study on Uighur faces in the journal Hereditas (Beijing), published by the government-backed Chinese Academy of Sciences. They were also listed as authors of a study examining DNA samples taken last year from 612 Uighurs in Tumxuk that appeared in April in Human Genetics, a journal published by Springer Nature, which also publishes the influential journal Nature.

Both papers named numerous other authors, including Li Caixia, chief forensic scientist at the Ministry of Public Security.

In an interview, Dr. Tang said he did not know why he was named as an author of the April paper, though he said it might have been because his graduate students worked on it. He said he had ended his affiliation with the Chinese police in 2017 because he felt their biological samples and research were subpar.

To be frank, you overestimate how genius the Chinese police is, said Dr. Tang, who had recently shut down a business focused on DNA testing and ancestry.

Like other geneticists, Dr. Tang has long been fascinated by Uighurs because their mix of European and East Asian features can help scientists identify genetic variants associated with physical traits. In his earlier studies, he said, he collected blood samples himself from willing subjects.

Dr. Tang said the police approached him in 2016, offering access to DNA samples and funding. At the time, he was a professor at the Partner Institute for Computational Biology, which is run by the Chinese Academy of Sciences but was founded in 2005 in part with funding from the Max Planck Society and still receives some grants and recommendations for researchers from the German group.

Dr. Beck, the Max Planck spokeswoman, said Dr. Tang had told the organization that he began working with the police in 2017, after it had stopped funding his research a year earlier.

But an employment ad on a government website suggests the relationship began earlier. The Ministry of Public Security placed the ad in 2016 seeking a researcher to help explore the DNA of physical appearance traits. It said the person would report to Dr. Tang and to Dr. Li, the ministrys chief forensic scientist.

Dr. Tang did not respond to additional requests for comment. The Max Planck Society said Dr. Tang had not reported his work with the police as required while holding a position at the Partner Institute, which he did not leave until last year.

The Max Planck Society takes this issue very seriously said will ask its ethics council to review the matter, Dr. Beck said.

It is not clear when Dr. Liu, the assistant professor at Erasmus University Medical Center, began working with the Chinese police. Dr. Liu says in his online rsum that he is a visiting professor at the Ministry of Public Security at a lab for on-site traceability technology.

In 2015, while holding a position with Erasmus, he also took a post at the Beijing Institute of Genomics. Two months later, the Beijing institute signed an agreement with the Chinese police to establish an innovation center to study cutting-edge technologies urgently needed by the public security forces, according to the institutes website.

Dr. Liu did not respond to requests for comment.

Erasmus said that Dr. Liu remained employed by the university as a part-time researcher and that his position in China was totally independent of the one in the Netherlands. It added that Dr. Liu had not received any funding from the university for the research papers, though he listed his affiliation with Erasmus on the studies. Erasmus made inquiries about his research and determined there was no need for further action, according to a spokeswoman.

Erasmus added that it could not be held responsible for any research that has not taken place under the auspices of Erasmus by Dr. Liu, even though it continued to employ him.

Still, Dr. Lius work suggests that sources of funding could be mingled.

In September, he was one of seven authors of a paper on height in Europeans published in the journal Forensic Science International. The paper said it was backed by a grant from the European Union and by a grant from Chinas Ministry of Public Security.

Dr. Tang said he was unaware of the origins of the DNA samples examined in the two papers, the 2018 paper in Hereditas (Beijing) and the Human Genetics paper published in April. The publishers of the papers said they were unaware, too.

Hereditas (Beijing) did not respond to a request for comment. Human Genetics said it had to trust scientists who said they had received informed consent from donors. Local ethics committees are generally responsible for verifying that the rules were followed, it said.

Springer Nature said on Monday that it had strengthened its guidelines on papers involving vulnerable groups of people and that it would add notes of concern to previously published papers.

In the papers, the authors said their methods had been approved by the ethics committee of the Institute of Forensic Science of China. That organization is part of the Ministry of Public Security, Chinas police.

With 161,000 residents, most of them Uighurs, the agricultural settlement of Tumxuk is governed by the powerful Xinjiang Production and Construction Corps, a quasi-military organization formed by decommissioned soldiers sent to Xinjiang in the 1950s to develop the region.

The state news media described Tumxuk, which is dotted with police checkpoints, as one of the gateways and major battlefields for Xinjiangs security work.

In January 2018, the town got a high-tech addition: a forensic DNA lab run by the Institute of Forensic Science of China, the same police research group responsible for the work on DNA phenotyping.

Procurement documents showed the lab relied on software systems made by Thermo Fisher Scientific, a Massachusetts company, to work with genetic sequencers that analyze DNA fragments. Thermo Fisher announced in February that it would suspend sales to the region, saying in a statement that it had decided to do so after undertaking fact-specific assessments.

For the Human Genetics study, samples were processed by a higher-end sequencer made by an American firm, Illumina, according to the authors. It is not clear who owned the sequencer. Illumina did not respond to requests for comment.

The police sought to prevent two Times reporters from conducting interviews in Tumxuk, stopping them upon arrival at the airport for interrogation. Government minders then tailed the reporters and later forced them to delete all photos, audio and video recordings taken on their phones in Tumxuk.

Uighurs and human rights groups have said the authorities collected DNA samples, images of irises and other personal data during mandatory health checks.

In an interview, Zhou Fang, the head of the health commission in Tumxuk, said residents voluntarily accepted free health checks under a public health program known as Physicals for All and denied that DNA samples were collected.

Ive never heard of such a thing, he said.

The questions angered Zhao Hai, the deputy head of Tumxuks foreign affairs office. He called a Times reporter shameless for asking a question linking the health checks with the collection of DNA samples.

Do you think America has the ability to do these free health checks? he asked. Only the Communist Party can do that!

See the article here:
China Uses DNA to Map Faces, With Help From the West - The New York Times

The thrill of genetic genealogical discoveries should be tempered by ethical concerns – The Jewish News of Northern California

In these times of alarming disregard for scientific data (were talking to you, climate change deniers), lets hear it for science, specifically the astonishing gains made in the field of genetics and genetic testing.

Our three-part Past Lives series highlights the extraordinary resources now readily available to anyone curious about their family ancestry. Easy access to family records on the internet and the mapping of the human genome allows us to peer into our genetic past to learn more about who we are. And we can do both kinds of research from the comfort of our own homes.

For Jews, this has been a blessing for the most part. Unlike those Americans descended from Western European populations who can turn to comprehensive written archives, such as baptismal and marriage records, most Ashkenazi Jews like African Americans and Hispanic Americans lack the paper trail to trace their ancestry back further than a few generations.

Now, with the evolution of genetic testing, we can pinpoint to a remarkable degree of precision the composition of our ethnicity and where we came from. And all it takes is a simple cheek swab.

For some, discovering Jewish roots opens the door to new connections and layers of spiritual meaning.

As our stories show, this technology is about more than percentages and places on the map. For some, discovering the very existence of Jewish roots is a personal marvel, opening the door to new connections and layers of spiritual meaning.

However, as with any technology, ethical concerns run rampant.

Are we now as a global kehillah to rely on DNA test results as a proving ground for belonging to the Jewish people? What about those who convert to Judaism and might hail from different backgrounds? When their DNA pie chart comes back with zero percent Jewishness, does that mean they are any less Jewish?

Though matrilineal descent long ago enshrined a genetic aspect to Judaism, have we not seen enough of eugenics, racism, white nationalism and hate-fueled violence to check a rush to embrace anything that smacks of genetic purity?

These concerns have come to the forefront in Israel, where for the past two years the Chief Rabbinate has been using genetic testing to confirm the Jewishness of immigrants from the former Soviet Union seeking marriage licenses, in cases where the applicants dont have sufficient documentation of their status. Dozens of young couples, and their close relatives, have been humiliated in this way, and the practice is now being challenged before Israels High Court, brought there by the largely immigrant Yisrael Beiteinu party.

Scientific discoveries often involve thorny ethical questions. They must be faced openly.

View post:
The thrill of genetic genealogical discoveries should be tempered by ethical concerns - The Jewish News of Northern California