Category Archives: Genetics

Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy…

- After Median Follow-Up of 11.5 Months, 73 Percent of Patients Had Confirmed Tumor Response with Majority of Responses Still Ongoing; No New Safety Signals Observed for the Combination -

- Findings To Be Presented During an Oral Session at the 2020 Genitourinary Cancers Symposium -

BOTHELL, Wash. and TOKYO, Feb. 10, 2020 /PRNewswire/ --Seattle Genetics, Inc.(Nasdaq: SGEN) and Astellas Pharma Inc.(TSE: 4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") today announced updated results from the phase 1b/2 clinical trial EV-103 in previously untreated patients with locally advanced or metastatic urothelial cancer who were ineligible for treatment with cisplatin-based chemotherapy. Forty-five patients were treated with the combination of PADCEV (enfortumab vedotin-ejfv) and pembrolizumab and were evaluated for safety and efficacy. After a median follow-up of 11.5 months, the study results continue to meet outcome measures for safety and demonstrate encouraging clinical activity for this platinum-free combination in a first-line setting. Updated results will be presented during an oral session on Friday, February 14 at the 2020 Genitourinary Cancers Symposium in San Francisco (Abstract #441). Initial results from the study were presented at the European Society of Medical Oncology Congress in September 2019.

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.1,2

"Cisplatin-basedchemotherapy is the standard treatment for first-line advanced urothelial cancer; however, it isn't an option for many patients,"said Jonathan E. Rosenberg, M.D., Medical Oncologist and Chief, Genitourinary Medical Oncology Service at Memorial Sloan Kettering Cancer Center in New York."I'm encouraged by these interim results, including a median progression-free survival of a year for patients who received the platinum-free combination of PADCEV and pembrolizumab in the first-line setting."

In the study, 58 percent (26/45) of patients had a treatment-related adverse event greater than or equal to Grade 3: increase in lipase (18 percent; 8/45), rash (13 percent; 6/45), hyperglycemia (13 percent; 6/45) and peripheral neuropathy (4 percent; 2/45); these rates were similar to those observed with PADCEV monotherapy.3Eighteen percent (8/45) of patients had treatment-related immune-mediated adverse events of clinical interest greater than or equal to Grade 3 that required the use of systemic steroids (arthralgia, dermatitis bullous, pneumonitis, lipase increased, rash erythematous, rash maculo-papular, tubulointerstitial nephritis, myasthenia gravis). None of the adverse events of clinical interest were Grade 5 events. Six patients (13 percent) discontinued treatment due to treatment-related adverse events, most commonly peripheral sensory neuropathy. As previously reported, there was one death deemed to be treatment-related by the investigator attributed to multiple organ dysfunction syndrome.

The data demonstrated the combination of PADCEV plus pembrolizumab shrank tumors in the majority of patients, resulting in a confirmed objective response rate (ORR) of 73.3 percent (33/45; 95% Confidence Interval (CI): 58.1, 85.4) after a median follow-up of 11.5 months (range,0.7 to 19.2). Responses included 15.6 percent (7/45) of patients who had a complete response (CR)and 57.8 percent (26/45) of patients who had a partial response. Median duration of response has not yet been reached (range 1.2 to 12.9+ months). Eighteen (55%) of 33 responses were ongoing at the time of analysis, with 83.9% of responses lasting at least 6 months and 53.7% of responses lasting at least 12 months (Kaplan-Meier estimate).The median progression-free survival was 12.3 months (95% CI: 7.98, -) and the 12-month overall survival (OS) rate was 81.6 percent (95% CI: 62 to 91.8 percent); median OS has not been reached.

"These updated data are encouraging and provide support for the recently initiated phase 3 trial EV-302 that includes an arm evaluating PADCEV in this platinum-free combination in the first-line setting," said Roger Dansey, M.D., Chief Medical Officer at Seattle Genetics.

"These additional results support continued evaluation of PADCEV in combination with other agents and at earlier stages of treatment for patients withurothelial cancer," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head at Astellas.

About the EV-103 TrialEV-103 is an ongoing, multi-cohort, open-label, multicenter phase 1b/2 trial of PADCEV alone or in combination, evaluating safety, tolerability and efficacy in muscle invasive, locally advanced and first- and second-line metastatic urothelial cancer.

The dose-escalation cohort and expansion cohort A include locally advanced or metastatic urothelial cancer patients who are ineligible for cisplatin-based chemotherapy. Patients were dosed in a 21-day cycle, receiving an intravenous (IV) infusion of enfortumab vedotin on Days 1 and 8 and pembrolizumab on Day 1. At the time of this initial analysis, 45 patients (5 from the dose-escalation cohort and 40 from the dose-expansion cohort A) with locally advanced and/or metastatic urothelial cancer had been treated with enfortumab vedotin (1.25 mg/kg) plus pembrolizumab in the first-line setting.

The primary outcome measure of the cohorts included in this analysis is safety. Key secondary objectives related to efficacy include objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression free survival (PFS) and overall survival (OS). DoR,PFS and OS are not yet mature.

Additional cohorts in the EV-103 study will evaluate enfortumab vedotin:

More information about PADCEV clinical trials can be found at clinicaltrials.gov.

About Bladder and Urothelial CancerIt is estimated that approximately 81,000 people in the U.S. will be diagnosed with bladder cancer in 2020.5 Urothelial cancer accounts for 90 percent of all bladder cancers and can also be found in the renal pelvis, ureter and urethra.6 Globally, approximately 549,000 people were diagnosed with bladder cancer in 2018, and there were approximately 200,000 deaths worldwide.7

The recommended first-line treatment for patients with advanced urothelial cancer is a cisplatin-based chemotherapy. For patients who are ineligible for cisplatin, such as people with kidney impairment, a carboplatin-based regimen is recommended. However, fewer than half of patients respond to carboplatin-based regimens and outcomes are typically poorer compared to cisplatin-based regimens.8

About PADCEV PADCEV (enfortumabvedotin-ejfv) was approved by the U.S. Food and Drug Administration (FDA) in December 2019 and is indicated for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor and a platinum-containing chemotherapy before (neoadjuvant) or after (adjuvant) surgery or in a locally advanced or metastatic setting. PADCEV was approved under the FDA's Accelerated Approval Program based on tumor response rate. Continued approval may be contingent upon verification and description of clinical benefit in confirmatory trials.9

PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.2,9Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis).9PADCEV is co-developed by Astellas and Seattle Genetics.

Important Safety Information

Warnings and Precautions

Adverse ReactionsSerious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab AbnormalitiesIn one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased, hemoglobin decreased, phosphate decreased, lipase increased, sodium decreased, glucose increased, urate increased, neutrophils decreased.

Drug Interactions

Specific Populations

For more information, please see the full Prescribing Information for PADCEV here.

About Seattle GeneticsSeattle Genetics, Inc. is a global biotechnology company that discovers, develops and commercializes transformative medicines targeting cancer to make a meaningful difference in people's lives. The company is headquartered in Bothell, Washington, and has offices in California, Switzerland and the European Union. For more information on our robust pipeline, visit https://www.seattlegenetics.comand follow @SeattleGenetics on Twitter.

About AstellasAstellas Pharma Inc., based in Tokyo, Japan, is a company dedicated to improving the health of people around the world through the provision of innovative and reliable pharmaceutical products. For more information, please visit our website at https://www.astellas.com/en.

About the Astellas and Seattle Genetics CollaborationSeattle Genetics and Astellas are co-developing enfortumab vedotin-ejfv under a collaboration that was entered into in 2007 and expanded in 2009. Under the collaboration, the companies are sharing costs and profits on a 50:50 basis worldwide.

Seattle Genetics Forward-Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the EV-103 and EV-302 clinical trials; clinical development plans relating to enfortumab vedotin; the therapeutic potential of enfortumab vedotin; and its possible safety, efficacy, and therapeutic uses, including in the first-line setting. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the possibility that ongoing and subsequent clinical trials of enfortumab vedotin may fail to establish sufficient efficacy; that adverse events or safety signals may occur and that adverse regulatory actions or other setbacks could occur as enfortumab vedotin advances in clinical trials even after promising results in earlier clinical trials. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption "Risk Factors" included in the company's Annual Report on Form 10-K for the year ended December 31, 2019 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

Astellas Cautionary NotesIn this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.

Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.

1 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.2 Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13.3 Rosenberg JE, O'Donnell PH, Balar AV, et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2019;37(29):2592-600.4 ClinicalTrials.gov. A Study of Enfortumab Vedotin Alone or With Other Therapies for Treatment of Urothelial Cancer (EV-103). https://clinicaltrials.gov/ct2/show/NCT03288545.5 American Cancer Society. Cancer Facts & Figures 2020. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf. Accessed 01-23-2020.6National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: bladder cancer. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 05-01-2019.7International Agency for Research on Cancer. Cancer Tomorrow: Bladder. http://gco.iarc.fr/tomorrow. 8 National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer. Version 4; July 10, 2019. https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf.9 PADCEV [package insert]. Northbrook, IL: Astellas, Inc.

View original content to download multimedia:http://www.prnewswire.com/news-releases/seattle-genetics-and-astellas-announce-updated-results-from-phase-1b2-trial-of-padcev-enfortumab-vedotin-ejfv-in-combination-with-immune-therapy-pembrolizumab-as-investigational-first-line-treatment-for-advanced-bladder-cancer-301002275.html

SOURCE Astellas

See more here:
Seattle Genetics and Astellas Announce Updated Results from Phase 1b/2 Trial of PADCEV (enfortumab vedotin-ejfv) in Combination with Immune Therapy...

Genetic Testing Is on the Rise Heres Why to Get it Done Through a Health Care Provider – SurvivorNet

Clinical vs. DTC Genetic Testing

When 23andMe laid off roughly 100 employees last month, it was another admission that direct-to-consumer, or at-home, genetic testing sales are down at some leading companies. The reasons, however, while varied, have nothing to do with the interest in genetic testing. People want the information but it seems many prefer to get it from their doctors.

Theres reason for the interest: The field of genetics is booming.

Since the 1990s when we started testing for BRCA1, BRCA2 [which most notably increase the risk of breastandovarian cancers]and TP53 [which regulates cell division and keeps tumors from forming], the number of indications, or signs for cancer and the number of genes we can identify has expanded. And it will only continue to grow, Dr. Banu Arun, co-medical director of the Clinical Cancer Genetics Program at MD Anderson Cancer Center, tells SurvivorNet.

She notes that clinical genetic tests can aid in making recommendations for surveillance, determine prognosis and assist in treatment decision-making for cancer patients. Direct-to-consumer genetic tests dont offer that proverbial microscope.

When trying to understand your hereditary cancer risk, saysDr. Arun, clinical testing is the way to go.

Comparing DTC to clinical testing for cancer is actually a bit like apples to oranges.

Direct-to-consumer tests, which are relatively inexpensive ($99 and up), can make predictions about peoples health and ancestry. But theyre limited when it comes to offering tests for cancer risk. Currently, theFood and Drug Administration (FDA) has allowed at least one direct-to-consumer genetic testing company, 23andMe, to offer a test for cancer risk; it looks for three specific variations in BRCA1andBRCA2.

With direct-to-consumer testing, its only a very small piece of the puzzle, Megan Frone, board certified genetic counselor in the Clinical Genetics Branch at the National Cancer Institute, tells SurvivorNet. I think about it like a typo somewhere in a novel, she says. Theyre only looking at three pages, she says. You could have a typo anywhere else in the novel thats breaking that gene and giving you a higher risk for cancer, and theyre just not looking.

Clinical-grade testing can analyze the risk of 50 different types of cancer, according to The National Cancer Institute.

A study last year from the National Center for Biotechnology Informationnotes some other drawbacks, including how DTC tests frequently do notprovide conclusive results.

Most genetic tests performed by DTC companies are limited to few major genetic variants related to the phenotypes of interest, which leads to poor discriminatory power, it notes.

This means DTC genetic testing does not guarantee that a consumer with a high genetic risk score will suffer from a certain disease, it only indicates a genetic propensity.

Plus, test results could reveal other, unexpected, health risks.

You have to ask, Are they going to tell me about specific results I might not want to know about?' Frone says. Some at-home tests will tell you your risk for carrying certain Alzheimer gene variants. We dont have any particular treatment for Alzheimers. Some people dont want to know about that stuff because theres nothing they can do about it. They dont necessarily realize that theyre going to get that back on a test report.

All of which points to that important ingredient: an expert who can interpret and make an action plan.

DTC tests are often conducted without the involvement of a healthcare provider and without an understanding of clinical validity and utility, notes theCenters for Disease Control.

A recent study based on anonline survey of 1,001 adultsrepresentative of the population, found that public awareness of genomics and personalized medicine was not increasing in line with advancements in the industry. Seventy-three percent of the survey respondents had not heard of genetic counseling which is conducted by certified health professionals to advise consumers/patients on how to interpret genetic test results.

The first step for someone interested in learning about their risk for developing cancer, according to Frone, is to speak with a health care provider or genetic counselor to learn about options. Then, a risk assessment can be conducted by a certified genetic counselor.

In this type of consult, theyll look at personal medical history and family medical history. And, if youre female, theyll look at your hormonal risk factors, Frone explains. There are computer models to identify risks and patterns within someones personal and family history.

The next step, she says, is to discuss what needs to be done to test for the potential hereditary cancer syndrome.

People need to go into it understanding that genetic testing is really complicated, Frone says. To achieve the full value of it, weve got to apply the genetic test results in the context of their family health history and their other risk factors to understand final risk. Direct-to-consumer testing is very different from that. Its more recreational.

For those identified during the consult as being higher risk, insurance typically covers clinical testing. For people at a lower risk, they may be advised to skip testing altogether, or, they can pay out-of-pocket (costs can vary from $250 or more depending on whether a single gene or the entire genome is being tested).

For example, the BRCA1 and BRCA2 test 23andMe runs has been given the green light from the FDA, meaning the agency has determined that the benefits of the product outweigh the known risks for the intended use.

This specific test looks at three variants to determine if a woman is at an increased risk for developing breast and ovarian cancer, or if a man is at a higher risk for developing breast and prostate cancer.

It really is most relevant for individuals with Ashkenazi Jewish background because it can only look at three variants that can occur in these genes, when there are thousands possible, Frone says.

The actual test has been put in the Medical Devices class II risk category by the FDA. Class I devices, such as dental floss, are lowest risk. Class II, which includes condoms and powered wheelchairs, are moderate risk. Class III devices, such as pacemakers, require FDA approval in order to be marketed, while class I and II do not.

These mutations are most common in people of Ashkenazi Jewish descent and do not represent the majority of the BRCA1/BRCA2 variants in the general population, the FDA cautions.

Researchers estimate that roughly 5-10 percent of all cancers have a known genetic element, so while DNA tells a story, it doesnt write the entire script. External factors, like environmental nutrients or toxins, and lifestyle choices also influence risk for developing cancer.

Learn more about SurvivorNet's rigorous medical review process.

Kim Constantinesco is a freelance writer who specializes in health and founder ofPurpose2Play, which reports on positive and inspiring stories in sports. Read More

Here is the original post:
Genetic Testing Is on the Rise Heres Why to Get it Done Through a Health Care Provider - SurvivorNet

Genetics researchers target cadmium reduction in cacao – Valley News

The 28th annual International Conference on the Status of Plant and Animal Genome Research took place Jan. 11-15, in San Diego, and the Jan. 12 cacao genomics workshop included a presentation on the attempt to reduce the cadmium content of the bean used for chocolate.

Jim Dunwell of the University of Reading in the United Kingdom addressed the situation including potential solutions in Molecular Genetic Approaches to Reducing Cadmium Accumulation in Cocoa. Dunwell said that the European Union recently implemented a cadmium limit which took effect in January 2019.

During the processing of chocolate, were trying to get rid of cadmium, Dunwell said.

Chocolate is one of the major products with high cadmium levels, and rice grown in China also has high levels of cadmium.

Its something which is not good for anybody, Dunwell said. It accumulates in your body over your life.

The source of cadmium could be natural such as volcanic soils, and the use of phosphate fertilizers, mining activity or industrial pollution can also create cadmium in the soil.

There are hot spots geographically where cacao grown in those areas produce beans that exceed the limit, Dunwell said.

The four nations with the greatest cacao production are in western Africa, where the cadmium levels in the soil are the lowest. Although those four nations account for approximately 72% of the worlds chocolate production, some of the highest-quality chocolate is from South American cacao and many of those areas have cadmium levels which exceed the European Union limit. The initial maximum levels allow for a higher cadmium concentration in darker chocolate but no more than 0.00008%; the lowest maximum level is 0.00001% and the limit for cocoa powder is 0.00006%.

Africa and Asia the range is not too bad, but if you look at the Latin American, South American region the rate is much more, Dunwell said. Its a threat to the livelihoods of particularly sensitive areas of challenged parts of South America.

Efforts have been made to track the source of cadmium in those areas.

Some of them are natural geological sources, Dunwell said.

Other sources are due to fertilizers.

Agriculture in many areas depends on the use of fertilizers, Dunwell said. Certain phosphate fertilizers in parts of the world have high levels of cadmium in them.

The cadmium level in phosphate fertilizers varies depending on the source of the phosphate. Russian phosphate has lower cadmium levels, which creates the political risk that Russia will use that advantage as a bargaining tool.

European agriculture doesnt want to be dependent on Russian fertilizers, Dunwell said.

Some of the research involves adjustment of cadmium levels in the soil.

If you can stop the cadmium from getting into the plant thats probably the best way to start, Dunwell said. Plants dont need cadmium at all.

Biochar binding of the soil is one potential solution.

There is lots of agronomic interest and agronomic activity, but so far it hasnt been proven, Dunwell said.

Adjusting the pH level of soil is complicated by the different levels throughout the world.

Theres a very narrow pH window which you have to calculate, Dunwell said.

A focus on cacao plant rejection of cadmium through the root stock or through transporter genes is part of the research.

If we can do that in the long term, we can put that into a breeding program, Dunwell said. Cadmium comes in as a kind of hitchhiker. There is no cadmium-specific transporter.

Most of the genetic work that has been done in the past uses rice as a model system.

The idea was to identify the region looking at other species, Dunwell said. Rice is the precedent in terms of gene editing.

Cadmium is believed to be transported into the plant through the Natural Resistance-Associated Macrophage Protein transcriptome. Cacao has five NRAMP genes.

Its at one gene that does one thing, Dunwell said.

A mutagenesis process in the research utilizes downregulation of Heavy Metal ATPase genes, and when the HMA gene NtHMA4 is downregulated a reduction of more than thirtyfold is achieved.

Mutagenesis has been used conventionally, Dunwell said.

The NRAMP and HMA genes from were isolated in several accessions which differ in cadmium update.

We looked at variations between the different accessions that we have, Dunwell said.

Variants of different transcriptome length were then spliced. The researchers also used the NRAMP5 gene to transport cadmium from cacao into yeast.

You can test these variants from different cacao accessions, Dunwell said.

The cadmium will have an inhibitory effect on the yeast, Dunwell said. It stops yeast growing, but it allows the uptake of cadmium into yeast.

The purpose of that was for comparison rather than for adding cadmium to yeast, and the experiment confirmed that NRAMP5 encodes a protein capable of cadmium transport.

We know theyre in the right part of the yeast cell, Dunwell said. Were also interested in cadmium isotope variation. Plants can discriminate between these isotopes.

Cadmium in nature has eight isotopes.

We should consider cadmium not as one element but as a series of elements with different isotopes, Dunwell said.

Joe Naiman can be reached by email at jnaiman@reedermedia.com.

Link:
Genetics researchers target cadmium reduction in cacao - Valley News

Genetic Variants Linked to Disparity Between a Persons Internal Gender and Their External Sex – Technology Networks

Some of the first biological evidence of the incongruence transgender individuals experience, because their brain indicates they are one sex and their body another, may have been found in estrogen receptor pathways in the brain of 30 transgender individuals.

Twenty-one variants in 19 genes have been found in estrogen signaling pathways of the brain critical to establishing whether the brain is masculine or feminine, saysDr. J. Graham Theisen, obstetrician/gynecologist and National Institutes of Health Womens Reproductive Health Research Scholar at theMedical College of GeorgiaatAugusta University.

Basically and perhaps counterintuitively these genes are primarily involved in estrogens critical sprinkling of the brain right before or after birth, which is essential to masculinization of the brain.

Variants investigators identified may mean that in natal males (people whose birth sex is male) this critical estrogen exposure doesnt happen or the pathway is altered so the brain does not get masculinized. In natal females, it may mean that estrogen exposure happens when it normally wouldnt, leading to masculinization.

Both could result in an incongruence between a persons internal gender and their external sex. The negative emotional experience associated with this incongruence is called gender dysphoria.

They are experiencing dysphoria because the gender they feel on the inside does not match their external sex, Theisen says. Once someone has a male or female brain, they have it and you are not going to change it. The goal of treatments like hormone therapy and surgery is to help their body more closely match where their brain already is.

It doesnt matter which sex organs you have, its whether estrogen, or androgen, which is converted to estrogen in the brain, masculinizes the brain during this critical period, saysDr. Lawrence C. Layman, chief of the MCG Section of Reproductive Endocrinology, Infertility and Genetics in theDepartment of Obstetrics and Gynecology. We have found variants in genes that are important in some of these different areas of the brain.

These brain pathways are involved in regions of the brain where the number of neurons and how connected the neurons are typically differ between males and females.

They note that while this critical period for masculinizing the brain may seem late, brain development actually continues well after birth and these key pathways and receptors already need to be established when estrogen arrives.

While its too early to definitively say the gene variants in these pathways result in the brain-body incongruence called gender dysphoria, it is interesting that they are in pathways of hormone involvement in the brain and whether it gets exposed to estrogen or not, says Layman.

He and Theisen are co-corresponding authors of the study in the journalScientific Reports.

This is the first study to lay out this framework of sex-specific development as a means to better understand gender identity, Theisen says. We are saying that looking into these pathways is the approach we are going to be taking in the years ahead to explore the genetic contribution to gender dysphoria in humans.

In fact, they already are exploring the pathways further and in a larger number of transgender individuals.

For this study, they looked at the DNA of 13 transgender males, individuals born female and transitioning

to male, and 17 transgender females, born male and transitioning to female. The extensive whole exome analysis, which sequences all the protein-coding regions of a gene (protein expression determines gene and cell function) was performed at the Yale Center for Genome Analysis. The analysis was confirmed by Sanger sequencing, another method used for detecting gene variants.

The variants they found were not present in a group of 88 control exome studies in nontransgender individuals also done at Yale. They also were rare or absent in large control DNA databases.

Reproductive endocrinologist/geneticist Layman says his experience with taking care of transgender patients for about 20 years, made him think there was a biological basis. We certainly think that for the majority of people who are experiencing gender dysphoria there is a biologic component, says Theisen. We want to understand what the genetic component of gender identity is.

While genetics have been suggested as a factor in gender dysphoria, proposed candidate genes to date have not been verified, the investigators say. Most gene or gene variants previously explored have been associated with receptors for androgens, hormones more traditionally thought to play a role in male traits but, like estrogen in males, also are present in females.

MCG investigators and their colleagues decided instead to take what little is known about sex-specific brain development that estrogen bath needed in early life to ensure masculinization of the brain to hone in on potential sites for relevant genetic variances. Extensive DNA testing initially revealed more than 120,000 variants, 21 of which were associated with these estrogen-associated pathways in the brain.

Animal studies have helped identify four areas of the brain with pathways leading to development of a male or female brain, and the investigators focused on those likely also present in humans. Laboratory studies have indicated that disrupting these brain pathways in males and females during this critical period results in cross sex behavior, like female rodents mounting and thrusting and males taking on a more traditional female posture when mating. These cross sex behaviors, which also have been documented in non-human primates, emerge during the natural sex hormone surge of puberty.

While sex specific brain development has not been thoroughly evaluated in humans, as with animals, the effects typically play out most at the time of puberty, a time when sex hormones naturally surge, when the general awareness of our sexuality really begins to awaken and when the complex state of gender dysphoria may become easier for adolescents to articulate, the investigators say. Layman notes that many individuals will report experiencing gender incongruent feelings as early as age 5.

Theisen notes that we all are full of genetic variants, including ones that give us blue eyes versus brown or green, and the majority do not cause disease rather help make us individuals. I think gender is as unique and as varied as every other trait that we have, Theisen says.

The investigators suggest modification of the current system for classifying variants that would not imply that a variant means pathogenic, or disease causing.

Last year, the World Health Organization said that genderincongruenceis not a mental health disorder and six years before thatThe Diagnostic and Statistical Manual of Mental Disorders, replaced gender identity disorder with general dysphoria.

About 0.5 to 1.4% of individuals born male and 0.2 to 0.3 % of individuals born female meet criteria for gender dysphoria. Identical twins are more likely than fraternal twins to both report gender dysphoria.

Gender affirming therapies, like hormone therapies and surgeries along with mental health evaluation and support, help these individuals better align their bodies and brains, the physician-scientists say.

Transgender individuals experience increased rates of discrimination, sexual violence and are at increased risk of depression, substance abuse and attempted suicide. About 26% report use of alcohol or other drugs to help cope; 19% have been denied medical care by a physician or other provider, some report verbal harassment in a medical environment and insurance companies do not consistently cover the cost of gender affirming hormone or surgical therapies.

A problem, the investigators say, is an overall lack of understanding of the biologic basis of gender dysphoria.

While their study of 30 individuals they now have data on more than 30 others appears to be the largest to date, the sample size prompted them to classify the published findings as preliminary.

Reference: Theisen et al. (2019).The Use of Whole Exome Sequencing in a Cohort of Transgender Individuals to Identify Rare Genetic Variants. Scientific Reports.DOI: https://doi.org/10.1038/s41598-019-53500-y.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

See the original post:
Genetic Variants Linked to Disparity Between a Persons Internal Gender and Their External Sex - Technology Networks

Hemp Genetics CEO: Stable THC Levels Will Come With Breeding Innovation (OPINION) – Greenhouse Grower

Photo Courtesy Chuck Zimmerman/AgWired.com

Society at-large is literally bursting at the seams with interest in hemp and CBD, and the traditional, John Deere-tractor-and-a-bag-of-GMO-seed segment of the agriculture world has not been spared.

You can jump on your Google machine and pull up report after report of long-downtrodden ag regions known for legacy production of tobacco and cotton and other commoditized, low value crops turning acres over to hemp in large numbers. The Carolinas are a hotbed for this type of thing, from what were hearing anyways.

But really its happening all over the countryside, and its not going to stop anytime soon, not with the most conservative estimates pitting an acre of high-CBD hemp biomass fetching anywhere from $250 to $500 at market (after accounting for production costs, the bulk of which are to pay expensive hand labor crews to harvest the plants).

Comparably, soy farmers that have the benefit of large scale, mechanized planting and harvesting equipment were making around $160 per acre average on their crop back in 2012, whereas today they are reportedly taking a $20 an acre loss on average on production.

Thats largely the result of the market-depressing 2019 commodities Trade Wars, which has many farmers looking to hemp as a way to get themselves and the family farm out of the roller coaster international trade market and its wild fluctuations.

And lets not even mention the horrible spring planting season this past year for most commodity crops, where a ton of acres didnt even get planted and remained fallow for all of 2019.

Its all a long way of making the point that, you cant really blame a lot of these farmers for looking to hemp to change their fortunes. Farming is, after all, a business at the end of the day.

But, I digress. Lets get to the point of this article:

Long the gathering place for corn, soybean, sorghum, and other large-scale, commercial crop breeders and researchers working both for and with the multinational seed companies, this year the American Seed Trade Association (ASTA) held a Hemp and Seed Opportunities & Challenges session at the groups annual winter meeting in downtown Chicago, IL.

Those in attendance that mid-December afternoon report there was lots of interest in the session. I was mostly interested in hearing what one featured speaker, New West Genetics CEO Wendy Mosher, had to say to the group, which I found a recording of on ag media veterans Chuck and Cindy Zimmermans AgWired site (Thanks, Chuck and Cindy!).

The reason seeing Moshers name on the agenda peaked my interest: Growers weve come to know in this space have reported the genetics in hemp (and legal cannabis) as uneven performing at best, often generally unreliable for the marketed phenotypes promised and, at worst, either non-germinating or non-compliant on the 0.3% THC content requirement established in USDAs now-infamous Interim Final Rulemaking.

As CEO Mosher herself, an expert in the field, pointed out in her address to ASTA, theres just so little replicated, independent breeding data on all of these genetic varieties and crosses and hybrid strains of cannabis sativa she describes the current hemp breeding world as still in the 1950s compared to other technologically advanced ag seed segments like corn and soy.

Anyways, the reason I was interested in hearing from Mosher is I had heard of her outfit, New West Genetics, before. The name kept coming up in conversations with growers and in web searches as we did our preliminary homework on the genetic side of the hemp market.

New West is notable in the hemp genetics game and should be on any prospective hemp growers radar for many reasons, perhaps chiefly among them having the first US-bred commercial variety of hemp (NWG ELITE) to be earn classification as a certified variety by the Association of Seed Certifying Agencies (AOSCA). I would also add that theyve assembled a top-notch team of traditional and non-traditional breeding expertise, which you can check out here. Im no grower myself, but if I were, these are the type of genetics providers Id look to work with.

The hemp seed breeder CEO started off her address to ASTA with a plea for more participation from the ag seed industry, saying hemp breeding desperately needs the seed industries expertise and professionalism.

We need the seed industry to be participating so we can keep things as optimized as we can, she added.

Currently, she says, her group New West Genetics is focused on creating mechanized, stable varieties for the modern hemp market, which is pretty much exclusively for the flower and processing market, with some modest demand (for the grain).

With CBD based-products projected to be a $1.8 billion industry by 2022, and consumers becoming more aware of the high Omega 3 to low Omega 6 ratios in hemp Mosher says its the closest ratio to fish oil found in a plant-based formulation the hemp market seems like it is here to stay for the foreseeable future, and opportunity for farmers on both the flower and the grain side abound.

Mosher had one particular point that I found fascinating, mostly because it debunked one of the long-held beliefs I had come to take as fact, that the THC percentage levels of finished hemp flower were the direct result of environmental factors like heat stress, light, climate, etc.

All of the research that we have done thus far, and, again, its initial, but all of it has proven the exact opposite, Mosher says. Weve found that the genetics are controlling a little over 80% of the traits of the cannabinoids, as opposed to something like yield which is more 50-50. This is great news, because with well-bred seed we can create stable THC content across regions. And, of course, CBD (levels) as well.

Mosher also says New West has uncovered in its research trials from 2019 that some of the major commercial varieties on the market are not compliant (with the 0.3% THC requirement).

Yet, there is good news on the breeding side as well.

We want to find a balance between the two markets (flower and grain) and make mechanically harvestable varieties that are also enhanced for CBD, she says. And youre going to see enhanced CBD varieties that are diaceous next year, in 2020. Weve got them coming to market, weve just got to bulk up (the numbers).

New West is perhaps unlike some others Ive encountered in the industry in that the group is not actively lobbying for a loosening of the 0.3% THC or lower requirement in the IFR, or asking for an allowance of up to 1% THC as has become common during the USDA comment period, which was recently extended to Jan. 30.

While Mosher admits the requirement is the greatest risk for producers, from our perspective, she believes it can be managed and even conquered consistently by sourcing certified, replicated genetics.

Right now the way it (testing) works is you estimate about a 20-30 day window from maturity and you start to test for THC content, starting weekly and then as you see the THC content start to climb you start testing more frequently so you can catch it before it crosses the threshold, she explains. We see that as a result of using non-compliant genetics, but everyone in the industry sees it a little differently.

The consequences of missing that (0.3%) window is severe, because if it happens your crop cannot enter the stream of commerce, she adds. This hasnt been a huge deal up until this point because before the IFR not everybody was being tested, right? Now, they want every plot tested so its becoming more and more of a risk to not use compliant, proven genetics.

In concluding her address to ASTA, Mosher stressed the need for a mechanized harvesting solution so growers can more economically harvest the crop, as well as a need for more education on the grain side as to using hemp grain and protein in animal feed, bedding, and other sustainable applications.

Matthew J. Grassi is the Technology Editor for Greenhouse Grower and American Vegetable Grower, both Meister Media Worldwide brands. See all author stories here.

See the original post:
Hemp Genetics CEO: Stable THC Levels Will Come With Breeding Innovation (OPINION) - Greenhouse Grower

Scientists reveal the most extensive genetic map of cancers ever made – The Economist

It shows how hard tumours will be to crack

PERHAPS MORE than any other, cancer is seen as a disease of genes gone wrong. So, as genetic sequencing technology has become cheaper and faster, cancer scientists are using it to check which changes to genes cause tumours to spread.

The latest insights from one group, the international Pan-Cancer Analysis of Whole Genomes (PCAWG), are revealed this week in Nature. In an analysis of the full genomes of 2,658 samples of 38 types of tumour taken from the bladder to the brain, the researchers describe a blow-by-blow account of how a series of genetic mutations can turn normal cells into runaway clones. It provides the most comprehensive analysis yet of where to find this damaging disruption to DNA and, by unpicking the genetics of what makes cancer tick, just how hard it will be to tame.

For each of the cancer samples, the team produced a read-out of the tumour genomethe 3bn or so individual DNA lettersand compared it with the genome sequences of healthy cells taken from the same patients. In this way they could look for the genetic signatures of the cancer cells, where specific mutations had warped the genetic information.

Most mutations in the genome are harmless. But driver mutations, where genetic changes cause a cell to multiply more easily and faster than other cells, can trigger tumour growth. Many driver mutations have been found over the past decade and a handful have been translated into new medicines. In a fifth of breast cancers, for example, a driver mutation in the gene HER2 makes cells produce more of a protein on their surface that encourages them to grow and divide out of control. A series of drugs, including Herceptin, target this protein, and lead to significantly improved survival rates. The same HER2 mutation also appears in some lung cancers, raising hopes that similar therapies could work against that disease.

The problem is that most cancers have multiple driver mutations. Indeed, the PCAWG work found that on average each cancer genome carried four or five. And with some clever genetic archaeology they also found that some driver mutations can occur years before symptoms appear.

To discover this, researchers used a new concept called molecular time to reconstruct the cellular evolution of tumour cells. By comparing the DNA of cells within tumours, the researchers could place mutations in chronological order, based on how many cells in which they appeared. Earlier mutations occur more frequently. For example, driver mutations in a gene called TP53 were found to have originated at least 15 years before diagnosis in types of ovarian cancer, and at least five years before in types of colorectal and pancreatic cancer. Driver mutations in a gene called CDKN2A were found to have occurred in some lung cancers more than five years before diagnosis. In theory, that provides a window in which to find people at risk of developing these diseases, and perhaps prevent the cancer ever appearing.

The new study closes down talk that significant numbers of unknown driver mutations could lurk in the relatively unexplored regions of the human genome. One such driver mutation in non-coding DNA was found in 2013a mutation in the TERT gene across many different cancer types. To check for more like this, the consortium sequenced and analysed all the DNA letters of these non-coding regions (which account for 98% of human DNA) for the first time. They found that non-TERT driver mutations occurred at a rate of less than one per 100 tumours in these regions.

Peter Campbell of the Wellcome Sanger Institute in Cambridge, Britain, and a member of the PCAWG consortium, says an important contribution of the study is that by sequencing so many tumours it has raised the number of patients in whom a genetic contribution to their cancer can be identified from less than 70% to 95%. The goal, he says, is for genome-sequencing of tumours to become routine. Efforts to introduce this are under way in some countries, including Britain, the Netherlands and South Korea, he adds.

Results, results, resultsInsights are all very well, but what about cold, hard clinical progress? Turning genome sequences into meaningful predictors of cancer will require comparisons between samples from tens of thousands of patients, say the researchers, along with data on their treatments and survival rates. Processing this would be beyond the reach of any single organisation. Instead, a follow-up project is planned that includes national funding agencies, charities and corporate partners from more than a dozen countries around the world. It aims to link full sequences of 200,000 cancer patients to their clinical data by 2025.

The rest is here:
Scientists reveal the most extensive genetic map of cancers ever made - The Economist

Leading Experts in Genetics and Pregnancy Announce the Creation of a New Consortium – Yahoo Finance

BETHESDA, Md., Feb. 5, 2020 /PRNewswire/ --Prenatal genetic screening is a complex and rapidly evolving field of medicine.In an effort to help promote consensus recommendations and strive for consistency among various medical societies that issue recommendations and guidelines in the area of prenatal genetic testing, six national organizations have partnered to create the Reproductive Genetics Technology Consortium. (http://rgtc.perinatalquality.org)

Member organizations include the American College of Medical Genetics and Genomics; American Society for Reproductive Medicine; International Society of Prenatal Diagnosis; National Society of Genetic Counselors; Perinatal Quality Foundation; and Society for Maternal-Fetal Medicine. Representatives from each organization will meet regularly and as needed to facilitate group discussion and/or consensus.

The new Consortium aims to facilitate communication between professional organizations in their development of practice guidelines and to provide a forum for different societies to discuss appropriate utilization of reproductive genetic testing. It will also provide a forum through which commercial laboratories or other entities developing new technologies can proactively communicate to obtain input and guidance regarding new testing and will provide consensus expert opinions about the clinical utility and application of emerging genetic tests.

"Each member of the new Consortium has a goal of optimizing the health of women and infants," said SMFM representative, Mary Norton, MD. "Bringing our organizations together will establish an opportunity for dialogue between stakeholders and provide a stronger voice on these important issues."

ACMG President Anthony R. Gregg, MD, MBA, FACOG, FACMG said, "ACMG is confident that collaborations among the RGTC member organizations will ensure patients receive high quality care as innovative genetic technologies move from the laboratory to the bedside."

To contact the Consortium, contact Jean Spitz, MPH, CAE, RDMS at jspitz@perinatalquality.org.

About the American College of Medical Genetics and Genomics (ACMG) and ACMG Foundation

Founded in 1991, the American College of Medical Genetics and Genomics (ACMG) is the only nationally recognized medical society dedicated to improving health through the clinical practice of medical genetics and genomics and the only medical specialty society in the US that represents the full spectrum of medical genetics disciplines in a single organization. The ACMG is the largest membership organization specifically for medical geneticists, providing education, resources and a voice for more than 2,400 clinical and laboratory geneticists, genetic counselors and other healthcare professionals, nearly 80% of whom are board certified in the medical genetics specialties. ACMG's mission is to improve health through the clinical and laboratory practice of medical genetics as well as through advocacy, education and clinical research, and to guide the safe and effective integration of genetics and genomics into all of medicine and healthcare, resulting in improved personal and public health. Four overarching strategies guide ACMG's work: 1) to reinforce and expand ACMG's position as the leader and prominent authority in the field of medical genetics and genomics, including clinical research, while educating the medical community on the significant role that genetics and genomics will continue to play in understanding, preventing, treating and curing disease; 2) to secure and expand the professional workforce for medical genetics and genomics; 3) to advocate for the specialty; and 4) to provide best-in-class education to members and nonmembers. Genetics in Medicine, published monthly, is the official ACMG journal. ACMG's website (www.acmg.net) offers resources including policy statements, practice guidelines, educational programs and a 'Find a Genetic Service' tool. The educational and public health programs of the ACMG are dependent upon charitable gifts from corporations, foundations and individuals through the ACMG Foundation for Genetic and Genomic Medicine.

Raye Alford, PhDralford@acmg.net

View original content to download multimedia:http://www.prnewswire.com/news-releases/leading-experts-in-genetics-and-pregnancy-announce-the-creation-of-a-new-consortium-300999484.html

SOURCE American College of Medical Genetics and Genomics

Read more:
Leading Experts in Genetics and Pregnancy Announce the Creation of a New Consortium - Yahoo Finance

Harnessing Genetic Suppression to Treat Rare… – Labiotech.eu

Through quirks of genetics, some people are naturally resilient to heritable diseases. Thijn Brummelkamp, Managing Director and founder of the Dutch startup Scenic Biotech, explains how the company is using this genetic resilience to treat rare diseases and cancer.

Heritable diseases result from genetic mutations that cause essential proteins in the body to malfunction. For example, people with the condition NiemannPick type C have mutations in proteins involved in the transport of cholesterol in the cell. This makes cholesterol build up in the body and causes problems with walking and cognition.

However, some people with mutations that should cause disease show no sign of the illness. According to Brummelkamp who is also a Professor at the Netherlands Cancer Institute a big reason for this disease resistance is because of genes called genetic modifiers.

This explains why some people that have a mutation in the gene that causes the disease have more severe phenotypes than other family members may have, he told me.

Brummelkamp and co-founder Sebastian Nijman spun Scenic Biotech out of the Netherlands Cancer Institute and the University of Oxford in the UK in 2017. The companys preclinical pipeline is focused on identifying genetic modifiers that can suppress the effects of rare diseases in the lab, and then developing antibody or small molecule drugs to activate them in patients.

Typically, people have looked at the defective gene and tried to correct the gene or process, Brummelkamp said. In this case, this is a new class of drugs.

While it may sound promising, the task of finding genetic modifiers that delay disease also known as genetic suppressors is a huge one. First, there are thousands of rare diseases, each one with a very small pool of patients to study. Second, finding people with effective genetic suppressors for these diseases is tricky because many healthy people dont typically go for genetic screens.

For most human diseases, we do not know what the genetic suppressors are, explained Brummelkamp. Both clinical data and population genetics suggests that these genetic suppressors exist, but it has been really difficult to identify them.

Scenic Biotech uses single-cell screening in the lab to overcome this issue. The company takes billions of healthy human cells or cells containing mutations responsible for the disease of interest. For each healthy or diseased cell, Scenic uses a method called gene trapping to stop one of the genes in the genome from working, and uses fluorescent labeling to check how it affects the cells health. By doing this, the company can then build up a picture of which genes suppress the disease.

The idea is that we really get an overview of the genetics of a particular disease, so that is why were called Scenic, Brummelkamp said. We really hope to identify the scene that is relevant.

One big challenge to approaches like this one is that human cells contain two copies of each gene. These can mask mutations and make the analysis very complex. To address this, Scenic screens special human cancer-derived cells that only have one copy of each gene.

Scenic is currently focused on developing a treatment for NiemannPick type C disease, and has a list of potential suppressor genes that could be targets for new drugs. In addition, the company has identified a genetic modifier that could allow it to develop a cancer immunotherapy enhancing the effect of checkpoint inhibitors, which prevent cancer cells from evading the immune system.

Genetic modifiers are already being targeted by several biotechs. For example, the US company Maze Therapeutics raised an impressive 173M ($191M) Series A last year to screen genomic datasets for new genetic modifiers.

For Scenic Biotech, the presence of other companies in this space doesnt worry them. I dont believe that we will be all fishing in the same pool, Brummelkamp noted. This could be applied in oncology, it could be applied in common diseases, in rare diseases and, of course, there are many different disorders and ways to look at them and ways to correct them.

While the field of genetic modifiers in therapeutics is still emerging, investors are already sharing in Brummelkamps excitement, demonstrated by Scenic Biotechs 6.5M Series A raised early after founding.

We did not have a difficult time finding excited investors to start Scenic and I think it was the concept and the opportunity, Brummelkamp told me. Its a timely moment now to identify these suppressors and see if we can develop them. It was a very risky and early idea but one with great potential.

Despite having founded two biotechs in his career Scenic Biotech and the Austrian company Haplogen in 2010 Brummelkamp spends the majority of his working life in his academic lab, limited to one day per week at Scenic Biotech. As a scientist, results are always exciting, whether they come from the Scenic side or the academic side, he told me.

Nonetheless, Brummelkamp is enthusiastic about spinning out new companies based on his discoveries, bridging the gap between academic discovery and commercialization.

I think its very exciting. Ive learned so much more in the last two years and also from my previous experience in biotech, than I could imagine, he said. It really gives me a bit of a better understanding of the biology and, on the other hand, of the challenges in biotech and pharma.

Images from E. Resko and Shutterstock

Visit link:
Harnessing Genetic Suppression to Treat Rare... - Labiotech.eu

Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies – Science…

INTRODUCTION

The date palm (Phoenix dactylifera), a dioecious species in the Arecaceae (formerly Palmae) family has a historical distribution stretching from Mauritania in the west to the Indus Valley in the east (1). A major fruit crop in hot and arid regions of North Africa and the Middle East and one of the earliest domesticated tree crops, archaeobotanical records suggest that the earliest exploitation and consumption of dates is from the Arabian Neolithic some 7000 years before the present (yr B.P.) (1). Evidence of cultivation in Mesopotamia and Upper Arabian Gulf approximately 6700 to 6000 yr B.P. support these centers as the ancient origin of date palm domestication in this region, with a later establishment of oasis agriculture in North Africa (1, 2).

The current date palm germplasm is constituted by two highly differentiated gene pools: an eastern population, consisting of cultivars extending from the Middle East and Arabian Peninsula to northwest India and Pakistan and a western population covering North Africa and sub-Saharan Africa (3, 4). Introgressive hybridization by a wild relative in North African date palms has been proposed as a source of this differentiation (2).

Date palms in the southern Levant (modern-day Israel, Palestine, and Jordan), situated between eastern and western domestication areas, have historically played an important economic role in the region and were also of symbolic and religious significance (5). The Kingdom of Judah (Judea) that arose in the southern part of the historic Land of Israel in the 11th century BCE was particularly renowned for the quality and quantity of its dates. These so-called Judean dates grown in plantations around Jericho and the Dead Sea were recognized by classical writers for their large size, sweet taste, extended storage, and medicinal properties (5). While evidence suggests that Judean date culture continued during the Byzantine and Arab periods (4th to 11th century CE), further waves of conquest proved so destructive that by the 19th century, no traces of these historic plantations remained (5).

In 2008, we reported the germination of a 1900-year-old date seed (6) recovered from the historical site of Masada overlooking the Dead Sea. In the current study, six additional ancient date seeds from archaeological sites in the Judean desert were germinated, bringing to seven the number of ancient genotypes genetically analyzed using molecular markers. In addition, morphometric analysis was used to compare the size and shape of ungerminated ancient date seeds with modern varieties and wild dates.

This study, which confirms the long-term survival of date palm seeds, provides a unique opportunity to rediscover the origins of a historic date palm population that existed in Judea 2000 years ago. The characteristics of the Judean date palm may shed light on aspects of ancient cultivation that contributed to the quality of its fruit and is thus of potential relevance to the agronomic improvement of modern dates.

Of the hundreds of ancient date seeds and other botanical material recovered from excavations carried out in the Judean desert between 1963 and 1991 (7, 8) (fig. S1), 32 well-preserved date seeds from the archaeological sites of Masada, Qumran, Wadi Makukh, and Wadi Kelt were planted in a quarantine site at Kibbutz Ketura (table S1). Of these, six ancient seeds germinated and were further identified by the following monikers: Masada: Adam; Qumran: Jonah, Uriel, Boaz, and Judith; and Wadi Makukh: Hannah (Figs. 1 and 2).

(A) Adam, (B) Jonah, (C) Uriel, (D) Boaz, (E) Judith, (F) Hannah, and (G) HU37A11, an unplanted ancient date seed from Qumran (Cave FQ37) used as a control. Scale bars, 0.5 cm (A, no bar size as unmeasured before planting). Photo credit: Guy Eisner.

Ages in months at time of photograph (A to C) Adam (110 months), Jonah (63 months), and Uriel (54 months). (D to F) Boaz (54 months), Judith (47 months), and Hannah (88 months). Photo credit: Guy Eisner.

On visual inspection, no specific observation linked the ability of these seeds to germinate compared with those that failed to germinate. Before planting, the ancient date seeds had been weighted, and their length was measured, with the exception of those seeds from Masada, (including Adam, the germinated seed), which unfortunately were not measured (table S1). No statistically significant differences were found between germinated and ungerminated seeds in either weight {1.67 0.55 and 1.61 0.29 g, respectively [Students t test (t) = 0.348, degree of freedom (df) = 24, P = 0.731]} or length [27.60 3.7 and 26.8 3.7 mm, respectively (t = 0.455, df = 24, P = 0.653)].

Radiocarbon ages are shown (Fig. 3 and table S2) for ancient date seeds germinated in the current study and also for the date seed (seed 3/Methuselah) germinated in our previous work (6). These ages were obtained from seed shell fragments found clinging to the rootlets of germinated seedlings during their transfer into larger pots (3 to 17 months of age). The values were recalculated to take into account contamination by modern carbon incorporated during seedling growth previously shown to reduce measured radiocarbon age by approximately 250 to 300 years, equivalent to 2 to 3% modern carbon (table S2) (6). On the basis of these calculations, Methuselah germinated in our previous study (6) and Hannah and Adam in the current study are the oldest samples (first to fourth centuries BCE), Uriel and Jonah are the youngest (first to second centuries CE), and Judith and Boaz are intermediate (mid-second century BCE to mid-first century CE) (Fig. 3).

Eighteen ancient date seeds that failed to germinate were recovered from the potting soil and compared with modern seeds derived from 57 current date palms of which 48 are cultivated varieties and 9 are wild individuals (9, 10). Ancient seeds were significantly larger in terms of both length and width (length, 27.62 3.96 mm; width, 10.38 0.71 mm) than both current cultivar (length, 20.60 4.70 mm; width, 8.33 1.02 mm) and wild date palm seeds (length, 16.69 3.39 mm; width, 7.08 0.46 mm) (Fig. 4). Ancient seeds were, on average, 27.69% wider (t = 11.923, df = 18.391, P = 2.157 1010) and 38.37% longer than the combined current samples (wild and cultivated) (t = 7.422, df = 17.952, P = 3.564 107).

Length (millimeters) (left) and width (millimeters) (right) of ancient date seeds that failed to germinate (n = 18), 9 current wild individuals (n = 180), and 48 cultivated P. dactylifera varieties (n = 928). Letters a, b, and c above boxes indicate Tukeys groups derived from HSD.test function and R package agricolae.

When only compared to the cultivars, the ancient date seeds were still larger: 24.55% wider (t = 11.923, df = 18.391, P = 2.157 1010) and 34.06% longer (t = 7.422, df = 17.952, P = 3.564 107). However, the contrast in seed size is even more marked when comparing ancient seeds and current wild date palms: The Judean date palm seeds were, on average, 39.55% wider (t = 19.185, df = 18.471, P = 5.943 1014) and 65.48% longer than current wild samples (t = 11.311, df = 19.574, P = 2.472 1010) (tables S3 and S4).

Analysis of seed shape diversity in current and ancient date seeds using principal components analysis (PCA) (dudi.pca function) performed on seed outlines confirmed visual observation that modern cultivated seeds were more diverse in size than ancient ones but did not differentiate between the two groups [multivariate analysis of variance (MANOVA), P > 0.05]. Ancient seeds displayed an elongated shape similar to current cultivated samples (fig. S2).

The sex of the six germinated ancient date seedlings in the current study identified using three sex-linked simple sequence repeats (SSR) (11) were as follows: Judith and Hannah are female genotypes and Uriel, Jonah, Boaz, Adam, and Methuselah (seed 3) from the previous study (6) are male genotypes. Through microsatellite genotyping, three levels of genetic inheritance were investigated to highlight geographic origins (Fig. 5, A and B): (i) inheritance transmitted by both parents to progeny, obtained by microsatellite markers showing western and eastern patterns of the ancient seeds genomes (4), as presented in structure analysis and pie charts (Fig. 5A); (ii) inheritance transmitted from mother to progeny through the chloroplast genome, reflecting maternal lineage origin by reporting chloroplastic minisatellite eastern or western alleles (Fig. 5B, arrow) (12); and (iii) inheritance transmitted from father to son through the Y chromosome, reflecting paternal lineage origin by reporting male specific sex-linked eastern or western alleles (Fig. 5B, arrow) (11).

(A) Structure analysis results are shown for modern and ancient western (green) and eastern (orange) genotype contributions. Pie charts highlight eastern (orange) and western (green) ancient seeds nuclear genomes contributions. (B) Ancient seeds maternal and paternal lineages origin. Arrows represent clonally transmitted parental information, with maternal (chloroplastic) and paternal (Y chromosome) from western (green) and eastern (orange) origins.

Structure analysis revealed that distribution of the germinated ancient date seeds was within previously described eastern and western date palm gene pools (Fig. 5A). Methuselah, Hannah, and Adam are the most eastern genotypes, although they also show ancient western contributions requiring numerous generations and highlighting ancient crosses. Boaz and Judith are the most admixed, with almost equal eastern and western contributions reflecting more recent crossings. Jonah and Uriel are the most western genotypes with the most western parental lineages (Fig. 5B).

To shed light on genetic diversity of the ancient dates, basic population genetic parameters were estimated and compared to modern reference collections (tables S5 and S6). The ancient genotypes showed an allelic richness value (Ar) (i.e., the number of alleles) of 3.59, a relatively high diversity for such a small sample size (seven genotypes) compared to values of other countries sampled (table S6). Genetic relationships between the ancient date and current varieties (Fig. 6 and table S7) show Methuselah and Adam close to eastern modern varieties Fardh4 and Khalass, respectively, assigned to current Arabian Gulf varieties; Hannah and Judith related to modern Iraqi varieties Khastawi and Khyara, respectively; and Uriel, Boaz, and Jonah, the most western genotypes, related to modern Moroccan varieties, Mahalbit, Jihel, and Medjool, respectively.

Modern varieties from United Arab Emirates (light orange), Iraq (red), Tunisia (blue), Morocco (light green), Egypt (dark green), and ancient genotypes (purple).

In the current study, six ancient date seeds, in addition to the seedling obtained in our previous study (6), were germinated. All the seeds were approximately 2000 years old and had been previously recovered from archaeological sites in the Judean desert, a rain shadow desert of ca. 1500 km2 located between the maquis-covered Judean Hills and the Dead Sea (fig. S1).

Little is known about the mechanisms determining seed longevity; however, it has been related to the ability to remain in a dry quiescent state (13). In the current study, low precipitation and very low humidity around the Dead Sea could have contributed to the longevity of the ancient date seeds, which may be an adaptation of date palms to extreme desert conditions fostering seed dispersion. Their remarkable durability, however, may also be connected to other extreme environmental conditions in this area; at 415 m below mean sea level, the Dead Sea and its surroundings have the thickest atmosphere on Earth, leading to a unique radiation regime and a complex haze layer associated with the chemical composition of the Dead Sea water (14). However, since no visible evidence in the current study was linked to seed germination and, accordingly, to their long term survival, further investigations are needed to understand the basis of date palm seed longevity.

Among the worlds oldest cultivated fruit trees, P. dactylifera is the emblematic of oasis agriculture and highly symbolic in Muslim, Christian, and Jewish religions (5). Closely connected to the history of human migrations, the first cultivated varieties of P. dactylifera are thought to have originated around Mesopotamia and the Upper Arabian Gulf some 6700 to 6000 yr B.P. (1, 2, 10). In Judea, an ancient geopolitical region that arose during the 11th century BCE in the southern part of the historic Land of Israel, and situated at the cross roads of Africa, Asia, and Europe, the origins of date palm cultivation are unknown. However, from historical records, a thriving Judean date culture was present around Jericho, the Dead Sea, and Jordan Valley from the fifth century BCE onward, benefitting from an optimal oasis agriculture environment of freshwater sources and subtropical climate (5).

Described by classical writers including Theophrastus, Herodotus, Galen, Strabo, Pliny the Elder, and Josephus, these valuable plantations produced dates attributed with various qualities including large size, nutritional and medicinal benefits, sweetness, and a long storage life, enabling them to be exported throughout the Roman Empire (5, 15, 16). Several types of Judean dates are also described in antiquity including the exceptionally large Nicolai variety measuring up to 11 cm (5, 15, 16).

In the current study, ancient seeds were significantly longer and wider than both modern date varieties and wild date palms. Previous research has established that both fruits and seeds are larger in domesticated fruit crops compared with their wild ancestors (17), suggesting that the ancient seeds were of cultivated origin (9, 18), most likely originating from the regions date plantations. Furthermore, an increase in seed size has been linked allometrically to an increase in fruit size (19), corroborating the historical descriptions of the large fruits grown in this region.

Genotypes of the germinated ancient date seedlings cover a large part of present-day date palm distribution area, findings that reflect the variety, richness, and probable influences of the historic Judean date groves. Microsatellite genotyping shows a relatively high diversity, with eastern and western gene pool contributions, allelic richness, and genetic proximity to current varieties cultivated in the Arabian Peninsula, Iraq, and North Africa. Although the sample size is small, a predominance of eastern female lineages (six of seven) indicates that eastern female varieties grown from local germplasm were probably clonally propagated from offshoots to maintain desirable fruit qualities. Male lineages, mainly western (four of five), suggest that genetically different or foreign males were used for pollination. This assumption is supported by first century texts, indicating that substantial knowledge existed in ancient Judea 2000 years ago regarding the most suitable males for pollination of female date palms (20).

Our results reinforce the historical narrative that a highly sophisticated domestication culture existed in ancient Judea. Local farmers with an interest in maintaining genetic diversity in their date plantations and anthropogenic pressures leading to selection on fruit dimension and other desirable traits used cross-breeding with foreign (genetically different) males to develop a rich collection of varieties.

These findings suggest that Judean date culture was influenced by a variety of migratory, economic, and cultural exchanges that took place in this area over several millennia.

In Israel, the oldest remains of P. dactylifera are wood specimens 19,000 yr B.P. from Ohalo II site on the Sea of Galilee (21). Recovery of carbonized date seeds from Chalcolithic and Early Bronze Age sites (4500 to 2900 BCE) in the Judean desert, Jordan Valley, and Jericho (22, 23) and early Iron Age sites in Israel (12th to 11th century BCE) (24) suggest that human exploitation and consumption of dates occurred at this time. However, it is unclear whether these samples, which are relatively few in number and of very small size (22, 25, 26), are derived from ancient wild populations, as suggested by morphometric studies of modern wild date populations (18) or represent an early stage of the domestication process.

In the current study, although the sample size is too small to claim a trend, on a gradient from east to west genetic contributions, the older the germinated seeds are on radiocarbon dating (Fig. 3), the more eastern is the nuclear genome (Fig. 5, A and B ). In this respect, Methuselah, Adam, and Hannah (first to fourth centuries BCE) have a predominantly eastern nuclear genome and eastern maternal lineage, their relationship to modern varieties from the Arabian Gulf and Iraq suggesting that they belong to the same eastern genetic background.

The P. dactylifera cultivated by the inhabitants of Judea at that time therefore appears to be from the eastern gene pool, possibly growing locally and related to oasis populations, of which relict populations were recently found in Oman (9).

Elite female cultivars may also have been introduced to ancient Israel from these regions, consistent with a pattern of human intervention and possibly active acquisition of date palm varieties. Established trade links are documented with Arabia and the Persian Gulf from at least the 12th century BCE (27). Babylonian date palm cultivation in southern Mesopotamia (most of modern Iraq), originating some 6000 yr B.P. (1, 2), used deportees from ancient Judea following its conquest in the sixth century BCE (28). After the collapse of the Neo-Babylonian Empire, returning exiles may have brought this specialized knowledge and selected cultivars back to Judea; a date variety Taali cultivated in both Judea and Babylon is mentioned in the Talmud (29).

Western genetic admixtures in the germinated seedlings and their proximity to current cultivated date varieties from Morocco also suggest that ancient Judean date palms were the result of germplasm exchanges with this area and of multiple crosses. Introgression of eastern genomes into western ones are common, detected in varieties from Algeria, Morocco, Mauritania, and particularly east-west junction areas like Egypt (1, 2, 4, 30). In the latter, eastern contributions from the Persian Gulf, detected in ancient Egypt date seeds from 1400 BCE to 800 CE, reveal a chronological pattern of change in agrobiodiversity and the possible emergence of a western form in the Roman period (10).

Introgression of date palm western genomes into eastern ones, however, is far lower (1, 2, 4, 12), their presence in the current study reflecting west to east exchanges.

The origins of these exchanges are unclear; however, archaeological evidence indicates that North Africa, Near East, and Mediterranean cultures were clearly linked during the Neolithic in the southern Levant (approximately 11,700 to 7300 B.P.) and were associated in Jericho with the earliest origins of food production and fundamental changes in human subsistence strategies (31).

Phoenicia, a maritime trading nation occupying the coastal areas of modern northern Israel, Lebanon, and Syria (1500 to 300 BCE), was also historically associated with cultivation and trade of date palms (32). We can speculate that later west to east germplasm exchanges to this region may have been associated with domesticated varieties originating in Phoenician City States in North African (e.g., Carthage in present-day Tunisia) (32), where oasis agriculture appeared relatively late in the archaeological record (3).

The most western genotypes in the current study (Uriel and Jonah) are also the youngest seeds (mid-first to mid-second CE), coinciding with established trade routes linking this region to North Africa and supporting evidence for date consumption in the latter 2000 years ago (2, 3). This period coincides with Judeas well-documented wars against Rome (66 to 73 CE and 132 to 136 CE) and deportation and displacement of its population (16). The ancient seeds in the current study were found in the Judean desert, historically a place of refuge due to its steep cliffs and inaccessible caves (16, 23). The loss of political autonomy and the final collapse of Judea have been postulated as causing major disruption to labor intensive practices associated with date cultivation (33). Elite cultivars no longer conserved by vegetative propagation (offshoots) were gradually replaced by seedling date palms producing fruits displaying considerable variation within the progeny. Although P. dactylifera can live for more than 100 years (33) and date groves in this region are thought to have persisted for several more centuries, they were already rare by the 11th century and had been entirely replaced by seedling populations or feral, wild trees producing only low-quality fruit (5, 33), by the 19th century.

The current study sheds light on the origins of the Judean date palm, suggesting that its cultivation, benefitting from genetically distinct eastern and western populations, arose from local or introduced eastern varieties, which only later were crossed with western varieties. These findings are consistent with Judeas location between east-west date palm diversification areas, ancient centers of date palm cultivation, and the impact of human dispersal routes at this crossroads of continents.

Given its exceptional storage potentialities, the date palm is a remarkable model for seed longevity research. Investigations on the molecular mechanisms involved in long-term protection in the dried state have important implications on plant adaptation to changing environments and for biodiversity conservation and seed banking. As new information on specific gene-associated traits (e.g., fruit color and texture) (3) is found, we hope to reconstruct the phenotypes of this historic date palm, identify genomic regions associated with selection pressures over recent evolutionary history, and study the properties of dates produced by using ancient male seedlings to pollinate ancient females. In doing so, we will more fully understand the genetics and physiology of the ancient Judean date palm once cultivated in this region.

The objectives of this study and its design were as follows:

1) The origin and selection of ancient date seeds derived from archaeological sites in the Judean desert.

2) The germination of ancient date seeds in a quarantine site following a preparatory process.

3) Radiocarbon dating and recalculation of calendar ages of germinated ancient date seeds based on seed shell fragments and selected controls.

4) Seed morphometric studies: Comparing ungerminated ancient date seeds with seeds from modern date varieties and wild date palms.

5) Microsatellite analysis of seven germinated date seedlings.

(statistical methods are included in the respective sections)

The ancient date seeds in the current study were obtained from botanical material recovered from archaeological excavations and surveys carried out at the following sites in the Judean desert between 1963 and 1991 and stored at room temperature since their discovery (fig. S1).

1) Masada: An ancient fortress/palace complex built by King Herod the Great (37 to 4 BCE) at the southern end of the Dead Sea on the site of an earlier Hasmonean fortification (141 to 37 BCE) (7). The site, built on a plateau approximately 400 m above the Dead Sea, was first excavated by the late Y. Yadin (Institute of Archaeology, Hebrew University, Jerusalem, Israel) from 1963 to 1965 (7). Bioarchaeological material found at this time included large numbers of date seeds buried under rubble close to the remains of an area identified as a food storage site.

2) Qumran: An archaeological site situated at the northern end of the Dead Sea including an ancient settlement dating from the second century BCE destroyed in 68 CE and a number of caves located in the surrounding cliffs and marl terrace associated with the 1947 discovery of the Dead Sea Scrolls. Later excavations and surveys of caves in this area, carried out from 1986 to 1989, by J. Patrich and B. Arubas (The Institute of Archaeology, The Hebrew University, Jerusalem, Israel) (8) included the following: Qumran Cave 13: artifacts found included potsherds from period 1b Qumran (until 31 BCE), numerous date stones and dried dates in a pit, and a pottery juglet dated to approximately 67 to 79 CE containing an unknown viscid substance and wrapped in palm fibers (used as a control in radiocarbon analysis in the current study) (see below); and Qumran Cave FQ37: containing a number of date stones and first to second CE century artifacts from the late Second Temple period (60 to 70 CE) and Roman period.

3) Wadi Makukh: A winter water channel in the Judean desert surrounded by high cliffs and containing a number of caves, which were surveyed from 1986 to 1989 (above). Date seeds found in caves 1, 3, 6, and 24 in this area were included in the current study; Cave 1 was found to include a Chalcolithic burial site (fifth millennium B.P.) containing human skeletons as well as Roman period artifacts but with signs of considerable disturbance by grave robbers (8).

4) Wadi Kelt: A winter water channel running from Jerusalem to the Dead Sea containing a number of caves (8). Date seeds from Masada were provided to S.S. by M. Kislev (Faculty of Life Sciences, Bar Ilan University), initially in 2005 (6) and again in 2007 (germinated in the current study), following permission by the late E. Netzer (Department of Archaeology, Hebrew University of Jerusalem). Date seeds from Qumran, Wadi Makukh, and Wadi Kelt were provided to S.S. by J. Patrich in 2009.

Out of a collection of many hundreds of ancient date seeds, a total of 34 were selected for the current study based on the specimens appearing visually to be intact whole seeds, in good condition, and without holes. They included Masada (8 seeds), Qumran (18 seeds), Wadi Makukh (7 seeds), and Wadi Kelt (1 seed). Ancient date seeds selected above were identified by code numbers and photographed, and measurements of weight and length were made before planting (with the exception of Masada seeds, which unfortunately were not measured) (table S1). One date seed, from the Qumran excavations (HU 37 A11), was selected as a control and left unplanted (table S1).

The remaining 33 seeds were subjected to a preparatory process to increase the likelihood of seed germination using the following established methods to sprout delicate germplasm (34): seeds were initially soaked in water for 24 hours and in gibberellic acid (5.19 mM) (OrthoGrow, USA) for 6 hours to encourage embryonic growth. This was followed by Hormoril T8 solution (5 g/liter) (Asia-Riesel, Israel) for 6 hours to encourage rooting and KF-20 organic fertilizer (10 ml/liter) (VGI, Israel) for 12 hours. All solutions were maintained at 35C.

Following the above procedure, one seed was found to be damaged and not planted. The remaining 32 seeds were separately potted in fresh sterile potting soil, 1 cm below the surface, and placed in a locked quarantine site at the Arava Institute of Environmental Sciences, Kibbutz Ketura, located in the southern Israel. Eight weeks after germination and periodically afterward, KF-20 (10 ml/liter) and iron chelate (10 g/liter) were added to the seedlings. Irrigation used desalinated water, as our previous study on germinating the first ancient date seed (6) indicated that using the regions highly mineralized water produced tip burn (darkening and drying of leaves).

Radiocarbon ages in the current study were obtained for the following bioarchaeological material: (i) fragments of seed shell coat found clinging to the rootlets of six germinated ancient date seeds when these seedlings were transferred into larger pots, (ii) an unplanted ancient date seed from cave 37 Qumran (HU37 A11) (used as a control), and (iii) part of an ancient palm frond surrounding an oil juglet found in Qumran Cave 13 (used as a control). Radiocarbon ages of seed shell fragments from the germinated seedlings were recalculated to take into account modern carbon incorporated during seedling growth (6).

1) Methodology: Nonorganic carbon (carbonates) were removed from all samples with 10% HCl under reduced pressure followed by repeated washes in deionized water until neutral (pH 7). Organic acids formed during the rotting process were removed with 10% NaOH followed by repeated washes (as above). To prevent absorption of atmospheric CO2, all samples were placed again in 10% HCl and then washed in deionized water until neutral. To remove chemicals used in the germination process, a 7-mm-long shell fragment from the germinated date seed weighing 80 mg was cut into six cubes of 8 mm3 and subjected to an additional series of four boil washes. All samples were heated in an evacuated sealed quartz tube with CuO as an oxygen source. The resulting CO2 was mixed with hydrogen in the ratio 2.5:1 and catalytically reduced over cobalt powder at 550C to elemental carbon (graphite). This mixture was pressed into a target and the 14C:12C ratio (for radiocarbon age) measured by accelerator mass spectrometry at the Institute for Particle Physics of the Swiss Federal Institute of Technology Zurich (ETHZ).

2) Calendar age: Calendar age was obtained using the OxCal 4.3 calibration program based on the latest IntCal 13 calibration curve (35). Calibrated calendar ages can be found with a probability of 68.3% in the 1-range and with a probability of 95.4% in the 2-range (table S2). The probability distribution P of individual ages is given for each sigma range. The 14C activity is reported as pMC (percentage of modern carbon) and corresponds to the ratio of the activity of the sample to the corrected activity of the oxalic acid standard, which has an age of 0 yr B.P.

3) Calculation of correction for pMC: The effect of contamination by modern carbon incorporated during seedling growth previously shown in our first germination of an ancient date seed to reduce measured age by 250 to 300 years (equivalent to 2 to 3% pMC) (6) was calculated using the following three groups based on the source of the ancient seeds in both the current and previous studies:

(i) Masada: Adam (current study), Methuselah (seed 3), and seed 1 [both from previous study (6) in which seed 1 was used as a control].

(ii) Qumran Cave 13: Judith and an ancient palm frond (used as a control)

(iii) Qumran Cave 37: Boaz, Jonah, Uriel, and seed HU37A11 (used as a control)

The germinated ancient seed Hannah from Wadi Makhukh was not assigned to a group due to the absence of a suitable control and considerable disruption to the site.

Using as age-controls the ancient palm frond (Qumran Cave 13), seed HU37A11 (Qumran Cave 37) from the current study and seed 1 (Masada) from the previous study (6), we assumed that a positive pMC difference between the germinated seeds and control sample could be attributed to modern carbon that was absorbed during germination. Ages of the germinated seeds were therefore recalculated (assuming that the measurement error remains unchanged) by adjusting the measured age to the control sample. For Hannah since no control exists, an average deviation (derived from the other samples) was taken into account.

Comparison of ancient date seeds that failed to germinate with modern date seeds. This was performed on the following groups:

1) Modern date seed (P. dactylifera) samples (n = 56): Being either from cultivated varieties (n = 47) or uncultivated and possibly wild individuals (n = 9) (9). Seeds from these sources (total n = 1108) were used as a current referential for seed morphometric analysis. The cultivated modern samples originated from 11 countries spanning date palm distribution from Spain to North Africa to the Middle-East. The candidate wild date palms originated from Oman and have been hypothesized as wild date palms based on seed shape, seed size (18), and genetic studies based on microsatellite and whole-genome resequencing data (9).

2) Ancient date seeds (n = 18): Of 26 ancient date seeds obtained from Qumran, Wadi Makukh, and Wadi Kelt archaeological sites (described above) that had been planted in the quarantine site, 21 failed to germinate and were retrieved from the potting soil. Of these, three were discarded as they had fragmented and were in poor condition. The remaining 18 retrieved ancient date seeds together with modern reference seeds (described above) were rephotographed on dorsal and lateral sides, and measurements of length and width were remade (table S3) [Neither current or previous (6) ancient date seeds from Masada that failed to germinate were used in the morphometric study as these seeds were not retrieved from the potting soil].

The following statistical analyses were performed using R software (36).

1) Size analysis of modern seeds: The length and width of a total of 1108 seeds obtained from 47 current cultivated varieties (928 seeds) and 9 current wild individuals (180 seeds) were measured using ImageJ (37) following the protocol previously established by Gros-Balthazard et al. (18). The thickness was not measured since it is highly correlated with width (18).

2) Comparison of seed size between current and ancient samples: Measurements for current varieties were compared with those measured for the ancient date seeds using boxplots and Students and Tukeys tests (table S4).

3) Analysis of seed shape diversity in current and ancient date seeds: PCA (dudi.pca function) was performed on seed outlines assessed by Fourier coefficients, a morphometric method applied to outline analysis.

DNA preparation. DNA of six ancient date seedlings from the current study and one (Methuselah) from the previous study (6) was analyzed. A set of 19 SSR was used for genotyping as described by Zehdi-Azouzi et al. (4). Gender was determined using date palm sex-linked microsatellite markers (11). Maternal lineages were traced back using the plastid intergenic spacer psbZ-trnf minisatellite (12, 38). Paternal lineages were studied through Y haplotypes using the three sex-linked SSRs (mPdIRDP80, mPdIRDP50, and mPdIRDP52) (11).

Total cellular DNA was extracted from lyophilized leaves using the TissueLyser and the DNeasy Plant Mini Kit (QIAGEN SA, Courtaboeuf, France) according to the manufacturers instructions. After purification, DNA concentrations were determined using a GeneQuant spectrometer (Amersham Pharmacia Biotech, France). The quality was checked by agarose minigel electrophoresis. The resulting DNA solutions were stored at 20C.

Amplification and genotyping. Polymerase chain reactions were performed in an Eppendorf (AG, Hamburg, Germany) thermocycler. Reaction was performed in 20 l and contained 10 ng of genomic DNA, 10 reaction buffer, 2 mM MgCl2, 200 M deoxynucleotide triphosphates, 0.5 U polymerase, and 0.4 pmol of the forward primer labeled with a 5M13 tail, 2 pmol of the reverse primer, and 2 pmol of the fluorochrome-marked M13 tail and MilliQ water. A touchdown polymerase chain reaction (PCR) was carried out with following parameters: denaturation for 2 min at 94C, followed by six cycles of 94C for 45 s, 60C for 1 min, and 72C for 1 min; then 30 cycles of 94C for 45 s, 55C for 1 min, and 72C for 1.5 min; then 10 cycles of 94C for 45 min, 53C for 1 min, 72C for 1.5 min; and a final elongation step at 72C for 10 min. PCR products were analyzed using an ABI 3130XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Allele size scoring was performed with GeneMapper software v3.7 (Applied Biosystems).

Genetic analyses. The ancient genotypes were compared to a reference matrix (90 genotypes) containing genotyping data on current date palm varieties covering the two genetic pools defined by Zehdi-Azouzi et al. (4) and including 35 samples from the eastern pool and 55 samples from the western pool (table S5). The number of alleles per group (NA), the number of alleles with a frequency higher than 5% (NA,P), and the observed (Ho), the expected (He) heterozygosities, and the fixation index values (FIS) were estimated using the GenAlEx 6.5 program (table S6). The allelic richness of each group was also calculated via the divBasic function implemented in the R package diversity (table S6) (39).

The hierarchical classifications were generated using PHYLIP package by calculating Cavalli-Sforza and Edwards distances (40) between ancient genotypes and current varieties (table S7). The obtained distance was used to construct the dendrogram using the neighbor-joining algorithm (41). The tree was drawn using DARwin software (42).

The membership probabilities of the ancient genotypes were identified by using a model-based clustering algorithm implemented in the computer program STRUCTURE v.2.3.4 (43). This algorithm identifies clusters (K) with different allele frequencies and assigns portions of individual genotypes to these clusters. It assumes the Hardy-Weinberg equilibrium and linkage equilibrium within clusters. The STRUCTURE algorithm was run without previous information on the geographic origin of the accessions using a model with admixture and correlated allele frequencies with 10 independent replicate runs for each K value (K value ranging from 1 to 6). For each run, we used a burn period of 10,000 iterations followed by 1 million iterations. The optimal number of clusters was assigned by using the run with the maximum likelihood validated with an ad hoc quantity based on the second-order rate of change in the log probability of data between different K values (fig. S3).The optimal alignment of the independent iterations was obtained by CLUMPP v.1.1 implemented in the Pophelper software v.1.0.10 (44); Pophelper v.1.0.10 (44) was also used to plot the results for the optimal K.

Acknowledgments: We thank J. Patrich and the late E. Netzer for making available ancient date seeds from Judean desert excavations; R. Krueger (USDA-ARS, USA) for providing some current date palm varieties; and S. Zehdi (Faculty of Sciences, University of Tunis El Manar, Tunisia), A. Lemansour (UAEU, DPDRUD, United Arab Emirates), M. A. Elhoumaizi (Sciences Faculty, Morocco), and C. Newton for allowing the use of genotyping data on current date palm varieties in the reference matrix. M. Collin is acknowledged for the help in the figure preparation and T. Bdolah Abraham for the help in statistics. O. Fragman-Sapir is acknowledged for identification of ancient date seeds and C. Yeres and A. Rifkin for information on Midrashic and Talmudic Jewish source material. Funding: The study was supported by donations to NMRC from The Charles Wolfson Charitable Trust (UK), G. Gartner and the Louise Gartner Philanthropic Fund (USA), and the Morris Family Foundation (UK). Author contributions: S.S. initiated, designed, and coordinated the study, procured ancient date samples, researched historical and archaeological information and integrated it with scientific findings, and wrote the paper. E.C. and N.C. performed genetic analyses on germinated seedlings. E.S. germinated ancient date seeds. M.E. performed radiocarbon analysis. M.G.-B., S.I., and J.-F.T. performed morphometric analysis. F.A. supervised genetic analyses and with E.C., M.G.-B., and M.E. helped write the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Continued here:
Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies - Science...

Study sheds new light on genetic relationship between three mood disorders – News-Medical.net

Researchers shed new light on the genetic relationship between three mood disorders associated with depression--major depression and bipolar disorder types 1 and 2, in a new study in the journal Biological Psychiatry, published by Elsevier.

"The clearest findings are a genetic distinction between type 1 bipolar and type 2 bipolar, and the greater similarity of type 2 bipolar to major depressive disorder," said first author Jonathan Coleman, PhD, a statistical geneticist and postdoctoral fellow in the lab of senior author Gerome Breen, PhD at the Institute of Psychiatry, Neuroscience, and Psychology at Kings College London, UK.

Both types of bipolar disorder used to be referred to as 'manic-depressive disorder'. Mania is a behavioral state associated with behavioral activation, euphoric or irritable mood, reduced need for sleep, impulsive behavior, impaired judgement, racing disorganized thoughts, impulsive behaviors, and frequently strongly held false beliefs (delusions) or hallucinations. Bipolar disorder type 1 is associated with mania and depression, while bipolar 2 is predominately associated with depression marked by mild symptoms reminiscent of mania, called hypomania.

The insights came from several extremely large datasets analyzed together. For their meta-analysis, Coleman, Breen and their co-authors combined genome-wide association studies from three large datasets of people with major depression and bipolar disorder to evaluate shared and distinct molecular genetic associations. Most of the data came from the large international Psychiatric Genomics Consortium. Additional data came from the UK Biobank, a major health resource established by the Wellcome Trust, and the online genetic service platform, 23andMe.

There are significant racial and ethnic differences in the findings from genome-wide association studies (GWAS). The findings of this study pertain only to people of European ancestry and findings might be different in other groups.

The authors also report that the genetic risk for these disorders was predictive of other traits as well. For example, the genetic risk for bipolar disorder was correlated with more educational attainment, while the heritable risk for major depressive disorder was associated with less education.

In the mouse brain, the authors also mapped the genetic risk for these disorders on to particular brain cell types using a sophisticated analytic strategy building on the pattern of genes expressed. They implicated serotonin neurons in the risk for both depression and bipolar disorder, while bipolar disorder distinctively involved GABA and glutamate neurons (nerve cell types also implicated in schizophrenia).

We have long known that mood disorders are highly heterogeneous and the boundaries between types of mood disorders are often difficult to define clinically. This new study suggests that there are aspects of genetic risk, and presumably brain function, that link forms of mood disorders, but there are also distinctions that may shed light on subtypes of depression that may have important implications for treatment."

John Krystal, MD, editor of Biological Psychiatry

Ultimately, the researchers want to develop clinical tools to help predict if a first episode of depression is likely to persist as a disorder or progress into bipolar disorder. "Genetic data won't ever replace clinical insight, but it might be a useful addition to clinical models," said Coleman.

Source:

Journal reference:

Colemanan, J.R.I., et al. (2019) The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biological Psychiatry. doi.org/10.1016/j.biopsych.2019.10.015.

More here:
Study sheds new light on genetic relationship between three mood disorders - News-Medical.net