Category Archives: Cell Biology

Dr. Edith Widder vouches for ocean conservation through exploration – The Wichitan

Colin StevensonMarine Biologist Edith Widder recounts her experiences from a Summer 2019 expedition where she recorded the first footage of a giant squid in US waters. Jan. 28.

Colin StevensonWidder closes with a quote from Jacques Cousteau before opening to questions from the audience. Jan. 28.

Colin StevensonAn audience member asks Widder about her experiences as a woman in a scientific field. In response, Widder recounts her mother as a role model and how she wasnt put into an engineering program due to her gender. Jan. 28.

Colin StevensonAfter an audience member asks about her view on environmentalism, Widder expands her earlier point that many environmentalists use a theme of fear, while she believes they should use hope to invoke better reactions. Jan. 28.

Colin StevensonEdith Widder explains the importance of bioluminescence research, referencing its use in cell biology studies as support. Jan. 28.

Colin StevensonAfter being asked about her 6-to-8-hour experiences in submersibles, Widder answers how cold and dark it seems, with potential bioluminescence always around her. Jan. 28.

Go here to see the original:
Dr. Edith Widder vouches for ocean conservation through exploration - The Wichitan

GIOSTAR Announces Medical Breakthrough in Biotechnology and Lifesciences To Manufacture Abundant, Safe Red Blood Cells From Stem Cells – Benzinga

GIOSTAR/HEAMGEN has developed and secured patented technology to manufacture lifesaving mature red blood cells from stem cells. The red blood cells are made utilizing a bioreactor that permits the production of mature red blood cells, under strictly controlled conditions, for transfusion therapy and replaces the need for a human blood donor. GIOSTAR/HEAMGEN mature red blood cells are safe and not compromised by inadequate pathogen detection and inactivation of diseases such as hepatitis C, HIV, hepatitis B and syphilis. The red blood cells are O-Negative (Universal Donor) to eliminate incompatibility and allosensitization reactions.

ATLANTA (PRWEB) January 29, 2020

GIOSTAR/HEAMGEN has developed and secured patented technology to manufacture lifesaving mature red blood cells from stem cells. The red blood cells are made utilizing a bioreactor that permits the production of mature red blood cells, under strictly controlled conditions, for transfusion therapy and replaces the need for a human blood donor. GIOSTAR/HEAMGEN mature red blood cells are safe and not compromised by inadequate pathogen detection and inactivation of diseases such as hepatitis C, HIV, hepatitis B and syphilis. The red blood cells are O-Negative (Universal Donor) to eliminate incompatibility and allosensitization reactions. Trauma situations often do not allow for adequate blood typing due to time restrictions, so the GIOSTAR/HEAMGEN red blood cells address that need effectively.

"There are three main problems for blood transfusions," stated Dr. Anand Srivastava, Founder and Chairman of GIOSTAR. "First we have to match the blood type. Second, there's not enough blood available every single time. And third, when we transfer blood from one person to another person, there is always a chance of the transfer of disease."

Watch a feature interview with Dr. Anand Srivastava on The DM Zone with host Dianemarie Collins.

The World Health Organization (WHO) published the first detailed analysis on the global supply and demand for blood in October 2019 and found that 119 out of 195 countries do NOT have enough blood in their blood banks to meet hospital needs. In those nations, which include every country in central, eastern, and western sub-Saharan Africa, Oceania (not including Australasia), and south Asia are missing roughly 102,359,632 units of blood, according to World Health Organization (WHO) goals. While total blood supply around the world was estimated to be around 272 million units, in 2017, demand reached 303 million units. That means the world was lacking 30 million units of blood, and in the 119 countries with insufficient supply, that shortfall reached 100 million units.

The global market opportunity for GIOSTAR/HEAMGEN technology presents not only a profitable and scalable business opportunity but also a significant social and environmental impact. The global market is estimated to be at least $ 85 Billion/year.

GIOSTAR/HEAMGEN has identified early entry global markets to include Military, Trauma, Asia (replace Hepatitis C contaminated blood products), Africa (AIDS contaminated blood), Newborns, Thalassemia patients, Allosensitized sickle cell disease patients. South Sudan was found to have the lowest supply of blood, at 46 units per 100,000 people. In fact, the country's need for blood was deemed 75 times greater than its supply. In India, which had the largest absolute shortage, there was a shortfall of nearly 41 million units, with demand outstripping supply by over 400 percent. Strategic investments are needed in many low-income and middle-income countries to expand national transfusion services and blood management systems. Oncology is a major user of blood transfusion but if countries don't have the capacity to manage the bulk of oncology, it will limit complex surgery options.

GIOSTAR/HEAMGEN has acquired the exclusive license to the patent for the technique for stem cell proliferation from University of California San Diego (UCSD). The founding team of GIOSTAR/HEAMGEN is comprised of the scientists and clinicians who were involved in creating the Intellectual Property at UCSD and has already achieved PROOF OF CONCEPT - the optimized lab scale proliferation of mature red blood cells - at UCSD as part of their research.

GIOSTAR/HEAMGEN is currently looking for strategic partnerships (Contact Doug@DMProductionsLLC.com) to accelerate the development of donor-independent red blood cells manufacturing capabilities and advance the proof of concept work already done (patented) around the manufacture of safe, universal donor, human red blood cells. GIOSTAR/HEAMGEN will also develop a full automated proprietary bioreactor using robotic technology to produce abundant quantities of red blood cells with a goal for cost-effective commercialization of fresh, human, universal donor Red Blood Cells (RBCs).

ABOUT GIOSTAR

Dr. Anand Srivastava is a Chairman and Cofounder of California based Global Institute of Stem Cell Therapy and Research (GIOSTAR) headquartered in San Diego, California, (U.S.A.). The company was formed with the vision to provide stem cell based therapy to aid those suffering from degenerative or genetic diseases around the world such as Parkinson's, Alzheimer's, Autism, Diabetes, Heart Disease, Stroke, Spinal Cord Injuries, Paralysis, Blood Related Diseases, Cancer and Burns. GIOSTAR is a leader in developing most advance stem cell based technology, supported by leading scientists with the pioneering publications in the area of stem cell biology. Company's primary focus is to discover and develop a cure for human diseases with the state of the art unique stem cell based therapies and products. The Regenerative Medicine provides promise for treatments of diseases previously regarded as incurable.

GIOSTAR is world's leading Stem cell research company involved with stem cell research work for over a decade. It is headed by Dr Anand Srivastava, who is a pioneer and a world-renowned authority in the field of Stem Cell Biology, Cancer and Gene therapy. Several governments and organizations including USA, India, China, Turkey, Kuwait, Thailand, Philippines, Bahamas, Saudi Arabia and many others seek his advice and guidance on drafting their strategic and national policy formulations and program directions in the area of stem cell research, development and its regulations. Under his creative leadership, a group of esteemed scientists and clinicians have developed and established Stem Cell Therapy for various types of autoimmune diseases and blood disorders, which are being offered to patients in USA and soon it will be offered on a regular clinical basis to the people around the globe.

For the original version on PRWeb visit: https://www.prweb.com/releases/giostar_announces_medical_breakthrough_in_biotechnology_and_lifesciences_to_manufacture_abundant_safe_red_blood_cells_from_stem_cells/prweb16854975.htm

Go here to read the rest:
GIOSTAR Announces Medical Breakthrough in Biotechnology and Lifesciences To Manufacture Abundant, Safe Red Blood Cells From Stem Cells - Benzinga

Validating the In-Silico Model for Toxicity Studies – News-Medical.net

Any experimental model or simulation must adhere to a series of validity requirements that confirm its applicability and reliability. This article will discuss the process by which in silico methods are verified before their use in preliminary toxicity studies.

Image Credit: Gorodenkoff/Shutterstock.com

In silico toxicology (IST), which is also denoted as computational toxicology, refers to the integration of modern computer technology with molecular biology to create a thorough risk assessment of new chemicals before the initiation of any cell or animal experiments. While IST methods are primarily used in the pharmaceutical industry during early drug development processes, they are also being investigated for their potential usefulness in assessing the toxicity of environmental chemicals. Some of the most widely applied IST methods include quantitative structure-activity relationships (QSAR) tests, pharmacophores, homology models, machine learning, data mining, network analysis tools and much more.

While the exercise of validating an experimental model can be performed by any individual or organization, the European Regulation on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) requires that the manufacturer and/or importer of any chemical is responsible for its subsequent analysis and safety evaluation.

Legislative bodies REACH in the EU and the Organization for Economic Co-operation and Development (OECD) of the United States recognize both the lack of data that is currently available on both the toxicological and physicochemical properties of many chemicals, as well as the limited laboratory capacity that exists to measure these effects in real-time. To support the accurate use of new alternative methods of toxicity testing like IST, both REACH and the OECD have created general rules for the use of such methods.

Between 2002 and 2004, several international meetings were held to establish general rules that could be applied to the validation of QSAR and SAR techniques, both of which are widely used in academic, industrial and governmental institutions around the world. The conclusion of these meetings determined that for a QSAR method to be applied for regulatory purposes, it must adhere to five distinct criteria. Of these criteria include a defined endpoint, an unambiguous algorithm, a defined domain of applicability, appropriate measures of robustness, predictivity, and goodness-of-fit and, if possible, a mechanistic interpretation.

Once it has been established that a given IST method, such as a QSAR model, adheres to the OECD validation principles, it is required that all of the information gathered during its validation is documented in report formats such as the QSAR Model Reporting Format (QMRF). In addition to providing its scientific validity, researchers must also include what specific toxicological effect or mechanism is being predicted by the given IST model, as well as its version number, type of methodology, training set size and content.

Since many IST models often exhibit a limited applicability domain, which refers to the ability of these models to only make predictions that apply for a specific set of chemicals, this domain must be explicitly discussed before its use for any new chemical. To further increase the reliability of any IST prediction, it is recommended that researchers combine additional independent or complementary IST models in their review.

Raunio, H. (2011). In Silico Toxicology Non-Testing Methods. Frontiers of Pharmacology 2; 33. DOI: 10.3389/fphar.2011.00033.

Myatt, G. J., Ahlberg, E., Akahori, Y., Allen, D., Amberg, A., et al. (2018). In silico toxicology protocols. Regulatory Toxicology and Pharmacology 96; 1-17. DOI: 10.1016/j.yrtph.2018.04.014.

Tichy, M., & Rucki, M. (2009). Validation of QSAR models for legislative purposes. Interdisciplinary Toxicology 2(3); 184-186. DOI: 10.2478/v10102-009-0014-2.

Excerpt from:
Validating the In-Silico Model for Toxicity Studies - News-Medical.net

Study finds unexpected response to estrogen at the single cell level – News-Medical.net

A team led by researchers at Baylor College of Medicine found that not only do individual mammalian cells in a population fail to respond synchronously to estrogen stimulation, neither do individual gene copies, known as alleles. The findings, published in the recent edition of the journal Nucleic Acids Research, also showed that neither the level of estrogen receptor nor its activation status determined asynchronous cellular responses.

However, a small molecule inhibitor of selected estrogen coregulators increased the response of individual alleles to hormone, establishing a previously unrecognized mode of regulation of estrogen-induced gene activation at the single cell level.

Estrogen is a type of steroid hormone that modulates a large number of biological functions, both in males and females, by regulating the activity of hundreds of genes per cell."

Dr. Fabio Stossi, first author, associate professor of Molecular and Cellular Biology and technical director of the Integrated Microscopy Core at Baylor

A great deal is known about how estrogen triggers its effects. It binds to a nuclear transcription factor (estrogen receptor, or ER), which in turn interacts with specific DNA sequences facilitating the recruitment of coregulators that participate in the regulation of gene expression. It was assumed that this process would likely happen simultaneously in all the ER-containing cells in a population that was stimulated with estrogen, but little was known of how actual single cells or individual copies of the same gene responded. Which is why researchers did not anticipate these finding at the single cell level.

"In the current study, we worked with human breast cancer cell lines grown in the lab. Using both molecular and imaging analyses, we determined, at single cell and allele levels, the expression of two well-characterized genes, GREB1 and MYC, whose activity is regulated by estrogen," said corresponding author, Dr. Michael A. Mancini, professor of Molecular and Cellular Biology, and Pharmacology and Chemical Biology at Baylor. Mancini is also the academic director of the long-running Integrated Microscopy Core (IMC) at Baylor and director of the recently-formed GCC Center for Advanced Microscopy and Image Informatics (CAMII), a CPRIT-funded resource across Baylor and the Texas A&M Institute for Bioscience and Technology.

The researchers incubated the cells in the lab and treated them with estrogen. Then they looked at the expression of GREB1 and MYC genes in individual cells, and at the expression of individual alleles in each cell. As expected, they found that estrogen activated GREB1 and MYC genes quickly, within 15 minutes, but there was an unexpected and marked asynchronous response to hormone simulation at both the individual cell and allele levels.

"Our analyses showed that gene activation of cells in a population appeared more random than we expected. In single cells, the response of each copy of the gene was independent from that of its neighboring cells. In some cells, no alleles of the genes were active, whereas cells next to them would have some or all their gene copies active," Stossi said.

Nevertheless, the researchers explained, that although these findings had not been described before in estrogen receptor biology, they were not a complete surprise.

Studies in genetically identical bacteria have shown that, when subjected to the same treatment, not all the bacteria respond the same way. This is called phenotypical heterogeneity.

"We have been interrogating mechanisms of action of ER via state-of-the-art imaging/analysis since the 90's, with continual improvements in our resources as they are developed or when they come to market, but these recent studies have uncovered novel characteristics of estrogen action in mammalian cells for the first time," Mancini said. "Having phenotypical heterogeneity confers an important adaptation strategy to cell populations, whether they are cancerous or normal. If all the cells in a population responded the same way to a harmful stimulus, for instance, by stopping an essential function, then they would not have the capability of surviving. But respond-ing differently may allow some cells to survive."

The next experiments intended to determine what caused asynchronous estrogen-triggered gene activation. Since the imaging and image analysis routines that were developed and used were amenable to the fully automated, high throughput imaging/analysis platforms within the IMC and CAMII, we had a unique opportunity to explore this question.

First, the researchers hypothesized that cells responded differently to estrogen because the number of estrogen receptors per cell varied. They were surprised to find out that the number of the estrogen receptors expressed in cells was not strictly dictating whether a cell was going to activate the target genes. Then, the researchers investigated whether the cellular response to estrogen depended on the activation status of the estrogen receptor using a patient-linked, constitutively-active receptor, but again, they found no correlation.

Next, the researchers explored the possibility that estrogen receptor coregulators were involved in modulating the allele-by-allele response to estrogen. Utilizing the automated high throughput resources of the IMC/CAMII, they tested a collection of small molecule epigenetic inhibitors and identified one, called MS049, an inhibitor of two protein arginine methyltransferases, that markedly increased the expected number of active alleles per cell under estrogen stimulation, in a gene-specific manner.

"For the first time we were able to alter the nature of the estrogenic response at the allele level, indicating that there are pathways that serve as rheostats to maintain variability of response to a stimulus, thus preventing maximal and uniform behavior in a population of cells," Stossi said. "These findings suggested that modifying the activity of coregulators can tweak the variation of allele-by-allele hormonal responses in a gene-specific manner."

The findings provide novel insights into the complex nature of the regulation of gene expression in mammalian cells.

Source:

Journal reference:

Stossi, F., et al. (2020) Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research. doi.org/10.1093/nar/gkz1172.

See the rest here:
Study finds unexpected response to estrogen at the single cell level - News-Medical.net

Engineer the future of human health with a PhD in biomedical engineering – Study International News

Technological advancements have paved the way for many important breakthroughs in biomedical engineering. New methods are being developed, as are our understanding, diagnosing and treating of medical conditions.

Unsurprisingly, the job outlook for biomedical engineers looks promising. The US Bureau of Labor Statistics notes that employment of biomedical engineers is projected to grow four percent from 2018 to 2028, about as fast as the average for all occupations. It adds that the increasing number of technologies and applications to medical equipment and devices, along with the medical needs of a growing and ageing population, will further require the services of biomedical engineers.

If youre trained in biomedical engineering or are a graduate in a related field looking to enhance your qualifications or progress into a leadership role, you may want to consider enroling in doctoral studies in biomedical engineering.

A good place to start is Michigan State University (MSU), which has carved itself a strong reputation in the field.

Its Biomedical Engineering Department (BME) offers a competitive research-oriented doctoral programme with flexible and personalised curricula.

The department is housed in a state-of-the-art research facility and engages with faculty across several disciplines, departments and colleges to explore the intersection of medicine, human biology and engineering.

The BME department is housed within a new research facility, the Institute for Quantitative Health Science and Engineering (IQ). IQ consists of seven research divisions, i.e. biomedical devices, biomedical imaging, chemical biology, developmental and stem cell biology, neuroengineering, synthetic biology and systems biology.

The interdisciplinary research centre is devoted to basic and applied research at the interface of life sciences, engineering, information science and other physical and mathematical sciences.

Students have access to the stellar facilities and equipment at IQ, which foster extensive collaboration between researchers from different areas to solve some of the worlds most challenging biomedical problems.

This systems approach to biomedical research look set to lead to discoveries that are the first of their kind. IQ is connected to both the Clinical Center and Life Sciences buildings, establishing a biomedical research hub at MSU that holds the potential to transform medicine.

The BME department also boasts a range of expertise, including advanced imaging methods and nanotechnology in biomedical research.

Training PhD students in the biodesign process is a priority here whereby students identify significant needs for new biomedical technologies before developing commercialisable technologies that meet those needs.

MSU also provides a host of services to help students healthcare solutions make it to market.

The MSU Innovation Center houses MSU Technologies, Spartan Innovations and MSU Business CONNECT in support of entrepreneurship, facilitating technology transfer, and providing the educational and financial support to turn doctorate students research technologies into successful businesses.

Another major focus of the BME department is biomedical imaging, including the development of new nanoparticle-based combined imaging and therapeutic technologies. The IQ building has one of the few PET MRI systems in the world.

What differentiates MSU from other institutions is their new, two-semester course sequence on the development and translation of new biomedical technologies to meet clinical needs.

Named BioDesign IQ 1 and 2, these courses train BME PhD students and professional students from the colleges of medicine, law, and business to work together effectively in innovation teams. They shadow doctors, identify unmet medical needs that have significant market potential, prototype new technologies to meet those needs, and then develop intellectual property and a business plan to advance these new technologies towards commercialisation.

Apart from its stellar facilities, the university is also home to faculty with strong expertise.

For instance, inaugural IQ director and BME chairperson Christopher H Contag is a pioneer in molecular imaging and is developing imaging approaches aimed at revealing molecular processes in living subjects, including humans and the earliest markers of cancer. Through advances in detection, professionals in the field can greatly improve early detection of diseases and restoration of health. Contag was previously at Stanford University as a professor in the departments of Pediatrics, Radiology, Bioengineering, and Microbiology and Immunology.

Meanwhile, Dr Mark Worden, BME Associate Chair, has developed several interdisciplinary programmes that integrate research and education. His research on nanostructured biointerfaces and multiphase biocatalysis has resulted in over 10 patents issued or pending on technologies including microbiosensors, bioelectronics and multiphase bioreactors.

Source: Shutterstock

Other faculty members doing trailblazing work in the field include Dr Dana Spence, who is investigating and dening new roles for red blood cells in autoimmune diseases such as Type 1 diabetes and multiple sclerosis; Dr Aitor Aguirre, whose research focuses on investigating regeneration and tissue re-modelling in health and disease; and Dr Ripla Arora, who is working on understanding how hormones influence the uterine luminal and glandular epithelium to modulate receptivity and implantation, to name a few.

In addition to insightful guidance from a faculty of this calibre, PhD students also enjoy 100 percent funding, including stipend, tuition and healthcare. As a graduate student in biomedical engineering, they will have the valuable opportunity to work alongside graduate students from different departments across campus.

Without a doubt, a PhD in biomedical engineering from MSU will prove to be fulfilling endeavour, professionally and personally.

Follow Michigan State University on Facebook, Twitter, Instagram, YouTube and LinkedIn

4 leading North American universities for biomedical engineering

Humanitas MEDTEC School: Where science and biomedical engineering meet

Go here to see the original:
Engineer the future of human health with a PhD in biomedical engineering - Study International News

New Partnership Could Lead To An Almost Instant Off-The-Shelf One-Size-Fits-All Cancer Treatment – Forbes

British scientists who announced last week their discovery of a new type of cancer-killing T-cell have entered a partnership with a biotechnology company pioneering the use of Dark Antigens to developT-cell receptor (TCR)-based immunotherapies and off-the-shelf cancer vaccines. The resultthey hopewill be a one-size-fits-all cancer therapy.

Last Monday, scientists at Cardiff University in the UK announced they had identified a new type of killer T-cella T-cell clonethat recognized and killed multiple different types of human cancer, while ignoring healthy, non-cancerous cells. The discovery, researchers said, offers hope of a universal cancer therapy. The researchers reported in Nature Immunology that these T-cells attacked many forms of cancer from all individuals. The T-cell clone killed lung, skin, blood, colon, breast, bone, prostate, ovarian, kidney and cervical cancer.

Less than a week later, the Cardiff researchers have announced they will enter a partnership with Ervaxx to eventually bring their discovery to patients.

Cardiff University Professor Andrew Sewell

The Cardiff University T-cell modulation group, within the Division of Infection and Immunity, studies all areas of T-cell biology including T-cell genetics, molecular biology, protein chemistry, crystallography and cell biology. The group aims to understand the genetic, biochemical and cellular mechanisms that govern T-cell responses in human diseases, such as HIV, EBV, tuberculosis autoimmunity and cancer.

Professor Andrew Sewell with Research Fellow Garry Dolton

Ervaxx is a UK biotechnology company based in London and Oxford, which is pioneering a new approach to developing targeted immunotherapies for treating and preventing cancer. These immunotherapies, including T-cell therapies, are based on new cancer targets (Dark Antigens) that derive from the dark matter of the genome, which are generally silenced in normal tissue but can become selectively activated in cancer.

T-cell therapies for cancer are the latest paradigm in cancer treatments. Current therapies include CAR-T and TCR-T, where immune cells are removed, genetically-modified and returned to a patients blood to seek and destroy cancer cells. Current therapies are personalized to each patient, target only a few types of blood cancer and have not been successful for solid tumors, which make up the vast majority of cancers.

In contrast, the newly discovered cell attaches to a molecule on cancer cells called MR1, which does not vary in humans.So not only would the treatment work for most types of cancer, said Professor Andrew Sewell, an expert in T-cells and a lead author on the study from Cardiff Universitys School of Medicine, but the same approach could be applied in all patients. It is hoped that the approach might eventually be applied as an almost instant off-the-shelf treatment.

The use of HLA-agnostic T-cell receptors has the promise to transform the treatment of common solid tumors that are presently incurable, said Carl June, MD, in reference to the Cardiff research. A leading expert in the delivery of successful T-cell therapies, June is a professor in Immunotherapy in the Department of Pathology and Laboratory Medicine and the director of the Center for Cellular Immunotherapies and of Translational Research in the Abramson Cancer Center of the University of Pennsylvania. As with organ or bone marrow transplants, previously identified cancer-specific T-cells have been suited only to small sections of the population who share specific tissue types, making it difficult to identify and treat the most appropriate patients. This new T-cell appears not to have these limitations, and if this is borne out in clinical testing, and the approach is shown to be safe and efficacious, it could represent a real advance for the field. We need to cure cancer and not turn it in to a chronic disease.

June studies various mechanisms of lymphocyte activation that relate to immune tolerance and adoptive immunotherapy for cancer and chronic infection. According to the Parker Institute, his research team published findings in 2011, which represented the first successful and sustained demonstration of the use of gene transfer therapy to treat cancer. Clinical trials utilizing this approach, in which patients are treated with genetically engineered versions of their own T-cells, are now underway for adults with chronic lymphocytic leukemia and adults and children with acute lymphoblastic leukemia. Early results in that group show that 90 percent of patients respond to the therapy, and more recently, trials of this approach have begun for patients with other blood cancers and solid tumors including pancreatic cancer, mesothelioma and the brain cancer glioblastoma. In 2017, it became the United States first FDA-approved personalized cellular therapy for the treatment of cancer.

Still, Sewell cautioned people from becoming overly optimistic too soon about Cardiffs findings. He said while the scientists discovery is potentially game-changing, an actual universal cancer therapy could be years away.I would really like to stress that we have not cured a patientour results were all laboratory based, albeit with patient T-cells and cancer cells. Clearing cancer in a culture dish and clearing it in a patient are two very different things.

When Cardiff researchers injected the new immune cells into mice with a human immune system and a human blood cancer line, the cancers cells were cleared to a level seen with CAR-T cells in the same mouse model, Sewell said. The group further demonstrated that equipping T-cells of skin cancer patients with the new receptor induced them to destroy not only the patients own cancer cells, but also other patients cancer cells in the laboratory, he said.

Cardiff researchers have now discovered T-cells equipped with a new type of T-cell receptor (TCR) which recognizes and kills most human cancer types, while ignoring healthy cells, Cardiff reported in a press release. This TCR recognizes a molecule present on the surface of a wide range of cancer cells as well as in many of the bodys normal cells but, remarkably, is able to distinguish between healthy cells and cancerous ones, killing only the latter.

Though there are various types of T-cells, Sewell said his interest is in killer T-cellsalso called cytotoxic T-cells. Killer T-cells are fascinating as they have the unique ability to see inside other body cells and scan them for anomalies he said. Conventionally, killer T-cells scan the molecular machines inside cells called proteins. A clever system presents bits of all the proteins inside each cell on its surface bound to molecular platforms called HLA [Human Leukocyte Antigen]. Normal, healthy body cells only present bits of normal proteins, and these are ignored by killer T-cells. If a cell is, for instance, infected with a virus, then it will contain some proteins of viral origin and bits of these will be displayed on the surface of the infected cell. Killer T-cells can recognize these protein fragments as foreign. This activates the killer T-cell to destroy the infected body cell and all its contents, including the virus. In this sense, killer T-cells act as a sophisticated seek and destroy weapon.

T-cells attacking cancer.

When cells become cancerous, they change the expression of some proteins and some proteins mutate, Sewell explained. These changes can also be detected by killer T-cells. Successful cancers go to great lengths to hide from killer T-cells, he said. We know that cancer often exploits the safety checkpoints that are built into T-cells to prevent them causing inflammation or autoimmunity. These checkpoints can be thought of as T-cell brakes, and successful cancers are often good at applying these brakes. Recent development of new drugs called checkpoint inhibitors prevents the application of these brakes and can result in complete clearance of some cancers in some people. Research that led to the discovery of checkpoint inhibitors was awarded the Nobel prize for Physiology or Medicine in 2018.

Sewell said the Cardiff teams discovery could mean exciting opportunities for pan-cancer, pan-population immunotherapies not previously thought possible. The research was funded by the Wellcome Trust, Health and Care Research Wales and Tenovus.

Until now, Sewell said, nobody knew this cell existed. He said the teams hypothesis is that the T-cell works by interacting with a molecule called MR1 which, in turn, flags up the distorted metabolism in a cancer cell.

Now that we know that these types of cells exist, we can actively look for others that work by a similar mechanism. Indeed, we have already found similar broadly tumoricidal, HLA-agnostic killer T-cells that see cancers via different surface molecules. The molecules targeted by these cells were also discovered using the CRISPR library approach. CRISPR gene editing has been a real game-changer.

Sewell said the next step will begin with safety testing on further healthy human cell lines in the laboratory. History has shown, he said, that some T-cells could attack things we dont want them to. We have already demonstrated that our new T-cell does not respond to 20 healthy cell types, he said. The human body has many more cell types than this so, as best we can, we need to rule out that this T-cell does not attack any further healthy human cell types. The new MR1-binding receptor has a natural sequence isolated from a healthy donor and thus the likelihood that it will attack healthy tissue is unlikely.

In any event, Sewell said it is important for people to acknowledge that this discovery has not been tested outside of the laboratory and not yet in human beings. It is impossible to reconstitute a whole human body as individual cell types in the laboratory, so after passing an accepted level of safety testing in this way, the next step is a first-in-man trial Sewell said. In order to minimize the risk, it is likely that the first time this type of T-cell is used in man, the T-cells will transiently [impermanently] express the relevant T-cell receptor and be given in low numbers, with escalation from there once safety is demonstrated. This way if there is any autoimmune attack it will be at low level and short-lived, so hopefully do minimal damage.

While Sewell hesitated at giving a timeline for when an actual universal cancer therapy or cure could be expected, he is hopeful that clinical trials may start in the next few years once further laboratory safety testing is completed.

The new collaboration to develop this recent discovery funded by Ervaxxwill support a multi-year research program with Sewells T-cell modulation group at Cardiff University focusing on the discovery and characterization of T-cells and TCRs reactive to cancer-specific antigens and ligands, including Ervaxx proprietary Dark Antigens.

The company has the right to advance resulting candidate T-cell/TCR-based immunotherapeutics and cancer vaccines through development and commercialization, Ervaxx stated in a press release.

Kevin Pojasek, Ervaxx CEO, said the collaboration with the Cardiff University research group shows early but enormous potential for the treatment of cancers. He said the partnership, which follows those with the University of Oxford, University of Cambridge and Johns Hopkins University School of Medicine, reinforces our ambition to collaborate with leading academic institutions and be at the cutting edge of the T-cell immunology field to drive the development of novel off-the-shelf cancer therapies.

In terms of the MR1 finding, when asked if it meant that some people are completely immune to cancer, Sewell said, Possibly. This immune cell could be quite rare, or it could be that lots of people have this receptor, but for some reason it is not activated. We just don't know yet, but we hope that this finding can be exploited and will pave the way for new cancer treatments.

See the original post:
New Partnership Could Lead To An Almost Instant Off-The-Shelf One-Size-Fits-All Cancer Treatment - Forbes

Marketing and Design Coordinator job with The Rockefeller University Press | 410015 – mediabistro.com

Rockefeller University Press (RUP) journals publish groundbreaking research in the life sciences and biomedicine from leading investigators around the world and serve as a valued resource to those engaged in cutting-edge research and who train future generations of scientists. We use the latest technologies and carry out rigorous peer review, applying the highest standards of novelty, mechanistic insight, data integrity, and general interest to fulfill our mission of publishing excellent science.

RUP publishes Journal of Cell Biology (JCB), Journal of Experimental Medicine (JEM), and Journal of General Physiology (JGP) and co-publishes Life Science Alliance (LSA). RUPs nonprofit journals were established by the research community, and editorial decisions and policies continue to be driven by scientists who actively contribute to their fields, appreciate the value of peer review, and desire a better publication experience for all.

We seek a Marketing and Design Coordinator to play an essential role in promoting RUP and its peer-reviewed scientific journals: JCB, JEM, JGP, and LSA.

The Position

Reporting to the RUP Director of Communications and Marketing, you will implement strategies that highlight the impactful research published in the journals and the editorial and publishing policies that benefit the scientific community and provide a best-in-class experience for authors.

Responsibilities include:

Qualifications

How to Apply

RUP is based in New York City and is a department of The Rockefeller University, a leading biomedical research university dedicated to conducting innovative, high-quality research to improve the understanding of life for the benefit of humanity.

We offer a competitive salary, comprehensive benefits, and a collaborative work environment. Please upload a resume and cover letter when submitting an application.

The Rockefeller University is an Equal Opportunity Employer - Minorities/Women/Disabled/Veterans

Original post:
Marketing and Design Coordinator job with The Rockefeller University Press | 410015 - mediabistro.com

Diabetes-related proteins examined for the first time at high resolution – Drug Target Review

A key receptor has been examined for the first time at high resolution which could lead to better treatments for conditions such as type 2 diabetes.

Scientists have examined a key receptor for the first time at high resolution which, they say, broadens understanding of how it might function and opens the door to future improvements in treating conditions such as type 2 diabetes.

The scientists were led by experts at the University of Birmingham, UK and the Max Planck Institute for Medical Research, Germany.

Glucagon-like peptide-1 receptors (GLP1R) are found on insulin-producing beta cells of the pancreas and neurons in the brain. The receptor encourages the pancreas to release more insulin, stops the liver from producing too much glucose and reduces appetite. This combination of effects can help to control blood sugar levels.

Therefore, GLP1R has become a significant target for the treatment of type 2 diabetesand a range of drugs are now available that are based on it. But much remains unknown about GLP1R function because its small size makes it difficult to visualise.

Our research allows us to visualise this key receptor in much more detail than before, David Hodson, Professor of Cellular Metabolism at the University of Birmingham. Think about watching a movie in standard definition versus 4k, thats how big the difference is. We believe this breakthrough will give us a much greater understanding of GLP1R distribution and function. Whilst this will not immediately change treatment for patients, it might influence how we design drugs in the future.

GLP1R visualized in insulin-secreting beta cells at super-resolution (credit: University of Birmingham).

The researchers used a number of techniques to conduct a detailed examination of the receptor in living cells including synthesis of marker compounds, immunostaining, super-resolution microscopy, as well as in vivo examination of mice.

Our experiments, made possible by combining expertise in chemistry and cell biology, will improve our understanding of GLP1R in the pancreas and the brain. Our new tools have been used in stem cells and in the living animal to visualise this important receptor and we provide the first super-resolution characterisation of a class B GPCR. Importantly, our results suggest a degree of complexity not readily appreciated with previous approaches, added Johannes Broichhagen, Departmental Group Leader of the Max-Planck Institute for Medical Research.

The findings were published in Nature Communications.

Read more from the original source:
Diabetes-related proteins examined for the first time at high resolution - Drug Target Review

Live Cell Imaging Market 2020 Research Report Overview by Top Key Players, Opportunities, Key Drivers, Application and Regional Outlook To 2027 -…

Global Live Cell Imaging Industry Analysis of the value chain helps to analyze major raw materials, major equipment, production processes, customer analysis and major Live Cell Imaging Market distributors. A comprehensive analysis of the statistics, market share, performance of the company, historical analysis Till 2018, volume, revenue, growth rate of YOY and CAGR forecast for 2027 is included in the report. Research Report also provides explicit information in recent years on mergers, acquisitions, joint ventures and other important market activities. Research Analysis report also provides Porter analysis, PESTEL analysis and market attractiveness to better understand the macro-and micro-level market scenario. Live Cell Imaging report also includes a detailed description, a competitive scenario, a wide range of market leaders and business strategies adopted by competitors with their analysis of SWOT.

Get the inside scope of the Sample report @https://www.theinsightpartners.com/sample/TIPHE100001215/

MARKET INTRODUCTION

Live cell imaging is the technique to study live cells with the help of images obtained from imaging systems such as high content screening systems and microscopes. This method is used by the scientists to obtain a better view of the cells biological function by studying the cellular dynamics. In recent years, live cell imaging technology has been widely accepted by various researchers to obtain a better knowledge regarding cell biology. Live cell imaging plays a crucial role in research fields such as neurology, immunology, microbiology and, genetics among others.

MARKET DYNAMICS

Rise in the number of cancer cases along with increase in the number of government funds for R&D activities are expected to be the driving factor in the market in the future years. Use of live cell imaging in the field of personalized medicine is expected to provide growth opportunities in the live cell imaging market during the forecast period.

The report also includes the profiles of key live cell imaging market companies along with their SWOT analysis and market strategies. In addition, the report focuses on leading industry players with information such as company profiles, components and services offered, financial information of last 3 years, key development in past five years.

Key Competitors In Market are

TOC pointsof Market Report:

Market size & shares

Market trends and dynamics

Market Drivers and Opportunities

Competitive landscape

Supply and demand

Technological inventions in industry

Marketing Channel Development Trend

Market Positioning

Pricing Strategy

Brand Strategy

Target Client

MARKET SCOPE

The Global Live Cell Imaging Market Analysis to 2027 is a specialized and in-depth study with a special focus on the global medical device market trend analysis. The report aims to provide an overview of live cell imaging market with detailed market segmentation by product, technology, application, end users and geography. The global live cell imaging market is expected to witness high growth during the forecast period. The report provides key statistics on the market status of the leading live cell imaging market players and offers key trends and opportunities in the market.

Market segmentation:

Live Cell Imaging Market to 2027 Global Analysis and Forecasts By Product (Equipment, Kits and Reagents, Software, Consumables); Technology (Fluorescence Recovery After Photobleaching, Fluorescence Resonance Energy Transfer, High-content Analysis, Fluorescence In Situ Hybridization, Others); Application (Drug Discovery, Cell Biology, Developmental Biology,, Stem Cells, Others); End User (Pharmaceutical & Biotechnology Companies, Hospitals, Diagnostic Laboratories, Others) and Geography

By Geography North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. And 13 countries globally along with current trend and opportunities prevailing in the region.

The target audience for the report on the market

Manufactures

Market analysts

Senior executives

Business development managers

Technologists

R&D staff

Distributors

Investors

Governments

Equity research firms

Consultants

Click to buy full report with all description:-https://www.theinsightpartners.com/buy/TIPHE100001215/

About Us:

The Insight Partnersis a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.

We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget

Contact Us:

The Insight Partners,

Phone: +1-646-491-9876

Email:sales@theinsightpartners.com

The rest is here:
Live Cell Imaging Market 2020 Research Report Overview by Top Key Players, Opportunities, Key Drivers, Application and Regional Outlook To 2027 -...

Impression Healthcare (ASX:IHL) receives all permits to begin OSA trial – The Market Herald

Impression Healthcare (IHL) has received all permits needed to begin a clinical trial for IHL-42X in treating obstructive sleep apnoea (OSA).

OSA occurs when the airway at the back of the mouth is partly or completely obstructed during sleep. Breathing is then reduced or may stop altogether.

The oxygen level declines and the sleeper then wakes up and starts breathing again.

Current treatments include weight loss, decreasing alcohol intake and sleeping on the side. In more serious cases, surgery and the use of an oral device is to be prescribed.

Simultaneously, Impression has begun sophisticated product formulation development of IHL-42X to be used in upcoming clinical trial activities.

The company has also started putting together precursory data and authorisations required for a phase 1B/2B clinical trial. This is planned to begin in the second quarter of 2020.

Sleep specialist and IHL board member Dr David Cunnington has assisted in sourcing patients for the trial.

In the trial, the company will observe the severity of OSA measured by the Aponea-Hypopnea Index, number of oxygen desaturation episodes that occur, daytime excess drowsiness and cognitive performance.

This study will be a world first and will occur at facilities managed by Swinburne University.

Impression has also engaged an FDA (Food and Drug Administration) consultant to commence the FDA registration process.

Doing this will eliminate the need to conduct certain pre-clinical steps due to widely accepted publicly available clinical data on certain components of IHL-42X.

The accelerated pathway reduces both time and cost over the life of the clinical trial process to registration and marketability.

During January, Dr Mark Bleakley was appointed to the role of Chief Scientific Officer to manage the OSA and other clinical programs and will work alongside Dr Sud Agarwal and Dr David Cunnington.

Dr Mark has a PhD in Cell Biology and Genetics from the University of British Columbia.

He has already demonstrated his clinical proficiency at Impression and is a suitable replacement to John Michailidis who is unable to complete his contract due to personal reasons.

Impression's share price is down 1.47 per cent with shares trading for 6.7 cents apiece at midday trade AEDT.

Read the rest here:
Impression Healthcare (ASX:IHL) receives all permits to begin OSA trial - The Market Herald