International Plant Protection Convention. Pest risk analysis for quarantine pests including analysis of environmental risks and living modified organisms, International Standards for Phytosanitary Measures No. 11 (Food and Agriculture Organization of the United Nations, Rome, Italy, 2004).
Peshin, R. & Dhawan, A. K. Integrated Pest Management: Volume 1: Innovation-Development Process, (Springer Science & Business Media, 2009).
Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621645 (2014).
Article Google Scholar
Desneux, N. et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest Sci. 95, 1739 (2022).
Article Google Scholar
Lu, Y. H., Wu, K. M., Jiang, Y. Y., Guo, Y. Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362365 (2012).
Article CAS PubMed Google Scholar
Zhang, J., Khan, S. A., Heckel, D. G. & Bock, R. Next generation insect resistant plants: RNAi mediated crop protection. Trends Biotechnol. 8, 871882 (2017).
Article Google Scholar
Weber, D. C. et al. Chemical ecology of Halyomorpha halys: discoveries and applications. J. Pest Sci. 90, 9891008 (2017).
Article Google Scholar
Han, P. et al. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for integrated pest management. J. Pest Sci. 92, 13591370 (2019).
Article Google Scholar
Pilkington, L. J., Messelink, G., van Lenteren, J. C. & Le Mottee, K. Protected Biological ControlBiological pest management in the greenhouse industry. Biol. Control 52, 216220 (2010).
Article Google Scholar
Crowther, L. I., Wilson, K. & Wilby, A. The impact of field margins on biological pest control: a metaanalysis. BioControl 68, 387396 (2023).
Article Google Scholar
Cocco, A., Deliperi, S. & Delrio, G. Control of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J. Appl. Entomol. 137, 1628 (2013).
Article CAS Google Scholar
Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 11511154 (2010).
Article CAS PubMed Google Scholar
Kogan, M. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43, 243270 (1998).
Article CAS PubMed Google Scholar
Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 11991215 (2015).
Article Google Scholar
Stenberg, J. A. A. conceptual framework for Integrated Pest Management. Trends Plant Sci. 22, 759769 (2017).
Article CAS PubMed Google Scholar
Karley, A. J. et al. Exploiting physical defence traits for crop protection: leaf trichomes of Rubus idaeus have deterrent effects on spider mites but not aphids. Ann. Appl. Biol. 168, 159172 (2016).
Article Google Scholar
Peterson, J. A. et al. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front. Plant Sci. 7, 1794 (2016).
Article PubMed PubMed Central Google Scholar
Hosseini, A., Hosseini, M., Michaud, J. P., Awal, M. M. & Ghadamyari, M. Nitrogen fertilization increases the nutritional quality of Aphis gossypii (Hemiptera: Aphididae) as prey for Hippodamia variegata (Coleoptera: Coccinellidae.) and alters predator foraging behavior.J. Econ. Entomol. 111, 20592068 (2018).
Article CAS PubMed Google Scholar
Han, P. et al. Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Ecol. Evol. 5, 54685477 (2015).
Article MathSciNet PubMed PubMed Central Google Scholar
Dong, Y. C. et al. Nitrogen and water inputs to tomato plant do not trigger bottom-up effects on a leafminer parasitoid through host and non-host exposures. Pest. Manag. Sci. 74, 516522 (2018).
Article CAS PubMed Google Scholar
Poelman, E. H. & Dicke, M. Plant-mediated interactions among insects within a community ecological perspective. In Annual Plant Reviews: Insect-Plant Interactions. 309338. (Wiley, 2014).
Emery, S. E. & Mills, N. J. Effects of predation pressure and prey density on short-term indirect interactions between two prey species that share a common predator. Ecol. Entomol. 45, 821830 (2020).
Article Google Scholar
Mariotte, P. et al. Plantsoil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129142 (2018).
Article PubMed Google Scholar
Han, P., Lavoir, A. V., Rodriguez-Saona, C. & Desneux, N. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management. Annu. Rev. Entomol. 67, 239259 (2022).
Article CAS PubMed Google Scholar
Lundgren, J. G., Gassmann, A. J., Bernal, J., Duan, J. J. & Ruberson, J. Ecological compatibility of GM crops and biological control. Crop Prot. 28, 10171030 (2009).
Article Google Scholar
Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: progress and prospects. Annu. Rev. Entomol. 62, 91109 (2017).
Article CAS PubMed Google Scholar
Jaworski, C. Crop diversification to promote arthropod pest management: a review. Agric. Commun. 1, 100004 (2023).
Article Google Scholar
Mouttet, R., Kaplan, I., Bearez, P., Amiens-Desneux, E. & Desneux, N. Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173, 13791386 (2013).
Article PubMed Google Scholar
Desneux, N., Kaplan, I., Yoo, H. J. S., Wang, S. & ONeil, R. J. Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol. Gen. 39, 127136 (2019).
Article Google Scholar
Staley, J. T. et al. Plant nutrient supply determines competition between phytophagous insects. Proc. R. Soc. B-Biol. Sci. 278, 718724 (2011).
Article Google Scholar
Han, P. et al. Plant nutrient supply alters the magnitude of indirect interactions between insect herbivores: from foliar chemistry to community dynamics. J. Ecol. 108, 14971510 (2020).
Article CAS Google Scholar
Gu, S. M., Zalucki, M. P., Ouyang, F. & Ge, F. Incorporation of local and neighborhood trophic cascades highly determine ecosystem function along a nitrogen subsidy gradient. Entomol. Gen. 42, 883890 (2022).
Article Google Scholar
Murrell, E. G. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Curr. Opin. Insect Sci. 23, 8188 (2017).
Article PubMed Google Scholar
Kuang, W., Gao, X., Tenuta, M. & Zeng, F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob. Change Biol. 27, 32443256 (2021).
Article Google Scholar
Khan, Z., Midega, C., Pickett, J. & Bruce, T. Push-pull technology: a conversation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int. J. Agric. Sustain. 9, 162170 (2011).
Article Google Scholar
Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37, 4 (2017).
Article Google Scholar
Campbell, B. M., Thornton, P., Zougmor, R., Van Asten, P. & Lipper, L. Sustainable intensification: what is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 3943 (2014).
Article Google Scholar
Zalucki, M. P., Adamson, D. & Furlong, M. J. The future of IPM: whither or wither? Aust. J. Entomol. 48, 8596 (2009).
Article Google Scholar
Biddinger, D. J. & Rajotte, E. G. Integrated pest and pollinator managementadding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10, 204209 (2015).
Article PubMed Google Scholar
Egan, P. A., Dicks, L. V., Hokkanen, H. M. T. & Stenberg, J. A. Delivering integrated pest and pollinator management (IPPM). Trends Plant Sci. 25, 577589 (2020).
Article CAS PubMed Google Scholar
Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agenda.
See the original post here:
A theoretical framework to improve the adoption of green Integrated Pest Management tactics | Communications Biology - Nature.com