Black, J. R. M. & McGranahan, N. Genetic and non-genetic        clonal diversity in cancer evolution. Nat. Rev.        Cancer 21, 379392 (2021).      
        Article        CAS PubMed                Google Scholar      
        Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and        resistance to cancer therapies. Nat. Rev. Clin.        Oncol. 15, 8194 (2018).      
        Article        CAS PubMed                Google Scholar      
        Junttila, M. R. & de Sauvage, F. J. Influence of tumour        micro-environment heterogeneity on therapeutic response.        Nature 501, 346354 (2013).      
        Article CAS PubMed                Google Scholar      
        Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D.        M. Mechanism-driven biomarkers to guide immune checkpoint        blockade in cancer therapy. Nat. Rev. Cancer        16, 275287 (2016).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Purim, O. et al. Biomarker-driven therapy in metastatic        gastric and esophageal cancer: Real-life clinical        experience. Target Oncol. 13, 217226 (2018).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Sveen, A., Kopetz, S. & Lothe, R. A. Biomarker-guided        therapy for colorectal cancer: Strength in complexity.        Nat. Rev. Clin. Oncol. 17, 1132 (2020).      
        Article        PubMed                Google Scholar      
        Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next        generation. Cell 144, 646674 (2011).      
        Article        CAS PubMed                Google Scholar      
        Celi-Terrassa, T. & Kang, Y. Distinctive properties of        metastasis-initiating cells. Genes Dev. 30,        892908 (2016).      
        Article PubMed        PubMed        Central         Google Scholar      
        Roos, W. P., Thomas, A. D. & Kaina, B. DNA damage and the        balance between survival and death in cancer biology.        Nat. Rev. Cancer 16, 2033 (2016).      
        Article CAS PubMed                Google Scholar      
        Brown, J. S., O'Carrigan, B., Jackson, S. P. & Yap, T. A.        Targeting DNA repair in cancer: Beyond PARP Inhibitors.        Cancer Discov. 7, 2037 (2017).      
        Article        CAS PubMed                Google Scholar      
        Pili, P. G., Tang, C., Mills, G. B. & Yap, T. A.        State-of-the-art strategies for targeting the DNA damage        response in cancer. Nat. Rev. Clin. Oncol.        16, 81104 (2019).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Cleary, J. M., Aguirre, A. J., Shapiro, G. I. & DAndrea,        A. D. Biomarker-guided development of DNA repair        inhibitors. Mol. Cell 78, 10701085 (2020).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Palmer, A. C., Chidley, C. & Sorger, P. K. A curative        combination cancer therapy achieves high fractional cell        killing through low cross-resistance and drug additivity.        Elife 8, e50036 (2019).      
        Article PubMed        PubMed        Central         Google Scholar      
        Palmer, A. C. & Sorger, P. K. Combination cancer therapy        can confer benefit via patient-to-patient variability        without drug additivity or synergy. Cell 171,        16781691.e13 (2017).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Dry, J. R., Yang, M. & Saez-Rodriguez, J. Looking beyond        the cancer cell for effective drug combinations. Genome        Med 8, 125 (2016).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial        drug therapy for cancer in the post-genomic era. Nat.        Biotechnol. 30, 679692 (2012).      
        Article CAS PubMed                Google Scholar      
        Menden, M. P. et al. Community assessment to advance        computational prediction of cancer drug combinations in a        pharmacogenomic screen. Nat. Commun. 10, 2674        (2019).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Paller, C. J. et al. Factors affecting combination trial        success (FACTS): Investigator survey results on early-phase        combination trials. Front. Med. (Lausanne) 6,        122 (2019).      
        Article PubMed                Google Scholar      
        Huang, L. et al. Driver network as a biomarker: systematic        integration and network modeling of multi-omics data to        derive driver signaling pathways for drug combination        prediction. Bioinformatics 35, 37093717        (2019).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Celebi, R., Bear Dont Walk, O., Movva, R., Alpsoy, S. &        Dumontier, M. In-silico prediction of synergistic        anti-cancer drug combinations using multi-omics data.        Sci. Rep. 9, 8949 (2019).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Preuer, K. et al. DeepSynergy: Predicting anti-cancer drug        synergy with deep learning. Bioinformatics        34, 15381546 (2018).      
        Article        CAS PubMed                Google Scholar      
        Bulusu, K. C. et al. Modelling of compound combination        effects and applications to efficacy and toxicity:        state-of-the-art, challenges and perspectives. Drug        Discov. Today 21, 225238 (2016).      
        Article        CAS PubMed                Google Scholar      
        Yuan, B. et al. CellBox: Interpretable machine learning for        perturbation biology with application to the design of        cancer combination therapy. Cell Syst. 12,        128140.e4 (2021).      
        Article        CAS PubMed                Google Scholar      
        Zou, J. et al. Neighbor communities in drug combination        networks characterize synergistic effect. Mol.        Biosyst. 8, 3185 (2012).      
        Article CAS PubMed                Google Scholar      
        Kholodenko, B. N. et al. Untangling the wires: a strategy        to trace functional interactions in signaling and gene        networks. Proc. Natl. Acad. Sci. USA 99,        1284112846 (2002).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Kholodenko, B. N., Rauch, N., Kolch, W. & Rukhlenko, O. S.        A systematic analysis of signaling reactivation and drug        resistance. Cell Rep. 35, 109157 (2021).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Rukhlenko, O. S. et al. Dissecting RAF inhibitor resistance        by structure-based modeling reveals ways to overcome        oncogenic RAS Signaling. Cell Syst. 7,        161179.e14 (2018).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Erdem, C. et al. A scalable, open-source implementation of        a large-scale mechanistic model for single cell        proliferation and death signaling. Nat. Commun.        13, 3555 (2022).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Frhlich, F. et al. Efficient parameter estimation enables        the prediction of drug response using a mechanistic        pan-cancer pathway model. Cell Syst. 7,        567579.e6 (2018).      
        Article        PubMed                Google Scholar      
        Szalay, K. Z. & Csermely, P. Computer implemented method,        processor device and computer program product for designing        intervention into real complex systems (2020).      
        Bliss, C. I. The toxicity of poisons applied jointly 1.        Ann. Appl. Biol. 26, 585615 (1939).      
        Article        CAS         Google Scholar      
        Kim, H. et al. Targeting the ATR/CHK1 axis with PARP        inhibition results in tumor regression in BRCA-mutant        ovarian cancer models. Clin. Cancer Res 23,        30973108 (2017).      
        Article        CAS PubMed                Google Scholar      
        Hinton, G. E. Connectionist learning procedures. Artif.        Intell. 40, 185234 (1989).      
        Article                Google Scholar      
        Hastie, T., Tibshirani, R. & Friedman, J. Linear methods        for regression. in 4399 (2009). https://doi.org/10.1007/978-0-387-84858-7_3.      
        Ke, G. et al. LightGBM: A highly efficient gradient        boosting decision tree. In Advances in Neural        Information Processing Systems 30, 31483156        (Curran Associates, Inc., 2017).      
        Chen, D., Liu, X., Yang, Y., Yang, H. & Lu, P. Systematic        synergy modeling: Understanding drug synergy from a systems        biology perspective. BMC Syst. Biol. 9, 56        (2015).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Chen, D., Zhang, H., Lu, P., Liu, X. & Cao, H. Synergy        evaluation by a pathway-pathway interaction network: A new        way to predict drug combination. Mol. Biosyst.        12, 614623 (2016).      
        Article CAS PubMed                Google Scholar      
        Parker, J. L. et al. Does biomarker use in oncology improve        clinical trial failure risk? A large-scale analysis.        Cancer Med. 10, 19551963 (2021).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Riches, L. C. et al. Pharmacology of the ATM inhibitor        AZD0156: Potentiation of irradiation and olaparib responses        preclinically. Mol. Cancer Ther. 19, 1325        (2020).      
        Article        CAS PubMed                Google Scholar      
        Mak, J. P. Y., Ma, H. T. & Poon, R. Y. C. Synergism between        ATM and PARP1 inhibition involves DNA damage and abrogating        the G 2 DNA damage checkpoint. Mol. Cancer Ther.        19, 123134 (2020).      
        Article        CAS PubMed                Google Scholar      
        Lloyd, R. L. et al. Combined PARP and ATR inhibition        potentiates genome instability and cell death in        ATM-deficient cancer cells. Oncogene 39,        48694883 (2020).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Kim, K. A. et al. Systematic calibration of a cell        signaling network model. BMC Bioinforma. 11,        202 (2010).      
        Article         Google Scholar      
        Kamel, D., Gray, C., Walia, J. S. & Kumar, V. PARP        inhibitor drugs in the treatment of breast, ovarian,        prostate and pancreatic cancers: An update of clinical        trials. Curr Drug Targets 19, (2018).      
        Zhu, H. et al. PARP inhibitors in pancreatic cancer:        molecular mechanisms and clinical applications. Mol.        Cancer 19, 49 (2020).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Mirza, M. R. et al. The forefront of ovarian cancer        therapy: Update on PARP inhibitors. Ann. Oncol.        31, 11481159 (2020).      
        Article        CAS PubMed                Google Scholar      
        Noordermeer, S. M. & van Attikum, H. PARP inhibitor        resistance: A tug-of-war in BRCA-mutated cells. Trends        Cell Biol. 29, 820834 (2019).      
        Article        CAS PubMed                Google Scholar      
        Criscuolo, D., Morra, F., Giannella, R., Cerrato, A. &        Celetti, A. Identification of novel biomarkers of        homologous recombination defect in DNA repair to predict        sensitivity of prostate cancer cells to PARP-inhibitors.        Int. J. Mol. Sci. 20, 3100 (2019).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Polzien, L. et al. Identification of novel in vivo        phosphorylation sites of the human proapoptotic protein        BAD: pore-forming activity of BAD is regulated by        phosphorylation. J. Biol. Chem. 284,        2800428020 (2009).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Avvakumov, N. et al. Conserved molecular interactions        within the HBO1 acetyltransferase complexes regulate cell        proliferation. Mol. Cell Biol. 32, 689703        (2012).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Hanigan, C. L. et al. An inactivating mutation in HDAC2        leads to dysregulation of apoptosis mediated by APAF1.        Gastroenterology 135, 16541664.e2 (2008).      
        Article        CAS PubMed                Google Scholar      
        Park, J.-M. & Kang, T.-H. Transcriptional and        posttranslational regulation of nucleotide excision repair:        The guardian of the genome against ultraviolet radiation.        Int. J. Mol. Sci. 17, 1840 (2016).      
        Article PubMed        PubMed        Central         Google Scholar      
        Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J.        H. J. Understanding nucleotide excision repair and its        roles in cancer and ageing. Nat. Rev. Mol. Cell        Biol. 15, 465481 (2014).      
        Article CAS PubMed                Google Scholar      
Here is the original post:
Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response ... - Nature.com