Fueled by the power of stories – MIT News

K. Guadalupe Cruzs path into neuroscience began with storytelling.

For me, it was always interesting that we are capable of keeping knowledge over so many generations, says Cruz, a PhD student in the Department of Brain and Cognitive Sciences. For millennia, information has been passed down through the stories shared by communities, and Cruz wanted to understand how that information was transferred from one person to the next. That was one of my first big questions, she says.

Cruz has been asking this question since high school and the urge to answer it led her to anthropology, psychology, and linguistics, but she felt like something was missing. I wanted a mechanism, she explains. So I kept going further and further, and eventually ended up in neuroscience.

As an undergraduate at the University of Arizona, Cruz became fascinated with the sheer complexity of the brain. We started learning a lot about different animals and how their brains worked, says Cruz. I just thought it was so cool, she adds. That fascination got her into the lab and Cruz has never left. Ive been doing research ever since.

A sense of space

If youve ever seen a model of the brain, youve probably seen one that is divided into regions, each shaded with a different color and with its own distinct function. The frontal lobe in red plans, the cerebellum in blue coordinates movement, the hippocampus in green remembers. But this is an oversimplification.

The brain isnt entirely modular, says Cruz. Different parts of the brain dont have a single function, but rather a number of functions, and their complexity increases toward the front of the brain. The intricacy of these frontal regions is embodied in their anatomy: They have a lot of cells and theyre heavily interconnected, she explains. These frontal regions encode many types of information, which means they are involved in a number of different functions, sometimes in abstract ways that are difficult to unravel.

The frontal region Cruz is bent on demystifying is the anterior cingulate cortex, or ACC, a part of the brain that wraps around the corpus callosum, which divides the outer layers of the brain into left and right hemispheres. Working with mice in Professor Mriganka Surs lab, Cruz looks at the role of the ACC in coordinating different downstream brain structures in orientating tasks. In humans, the ACC is involved in motivation, but in mice it has a role in visually guided orienting.

Everything you experience in the world is relative to your own body, says Cruz. Being able to determine where your body is in space is essential for navigating through the world. To explain this, Cruz gives the example of driver making a turn. If you have to do a left turn, youre going to need to use different information to determine whether youre allowed to make that turn and if thats the right choice, Cruz explains. The ACC in this analogy is the driver: It has to take in all the information about the surrounding world, decide what to do, and then send this decision to other parts of the brain that control movement.

To study this, Cruz gives mice a simple task: She shows them two squares of different shades on a screen and asks them to move the darker square. The idea is, how does this area of the brain take in this information, compare the two squares and decide which movement is correct, she explains. Many researchers study how information gets to the ACC, but Cruz is interested in what happens after the information arrives, focusing on the processing and output ends of the equation, particularly in deciphering the contributions of different brain connections to the resulting action.

Cruz uses optogenetics to figure out which areas of the brain are necessary for decision-making. Optogenetics is a technique that uses light to turn on or off previously targeted neurons or areas of the brain. This allows us to causally test whether parts of a circuit are required for a behavior or not, she explains. Cruz distills it even further: But mostly, it just lets us know that if you screw with this area, youre going to screw something up.

Community builder

At MIT, Cruz has been able to ask the neuroscience questions shes captivated by, but coming to the Institute also made her more aware of how few underrepresented minorities, or URMs, there are in science broadly. I started realizing how academia is not built for us, or rather, is built to exclude us, says Cruz. I saw these problems, and I wanted to do something to address them.

Cruz has focused many of her efforts on community building. A lot of us come from communities that are very other oriented, and focused on helping one another, she explains. One of her initiatives is Community Lunch, a biweekly casual lunch in the brain and cognitive sciences department. Its sponsored by the School of Science for basically anybody thats a person of color in academia, says Cruz. The lunch includes graduate students, postdocs, and technicians who come together to talk about their experiences in academia. Its kind of like a support group, she says. Connecting with people that have shared experiences is important, she adds: You get to talk about things and realize this is a feeling that a lot of people have.

Another goal of Cruzs is to make sure MIT understands the hurdles that many URMs experience in academia. For instance, applying to graduate school or having to cover costs for conferences can put a real strain on finances. I applied to 10 programs; I was eating cereal every day for a month, remembers Cruz. I try to bring that information to light, because faculty and administrators have often never experienced it.

Cruz also is the representative for the LGBT community on the MIT Graduate Student Council and a member of LGBT Grad, a student group run by and for MITs LGBT grad students and postdocs. LGBT Grad is basically a social club for the community, and we try to organize events to get to know each other, says Cruz. According to Cruz, graduate school can feel pretty lonely for members of the LGBT community, so, similar to her work with URMs, Cruz concentrates on bringing people together. I cant fix the whole system, which can be very frustrating at times, but I focused my efforts on supporting people and allowing us to build a community.

As in her research, Cruz again comes back to the importance of storytelling. In her activism on campus, she wants to make sure the stories of URMs are known and, in doing so, help remove the obstacles faced by that generations of students that come after her.

Excerpt from:
Fueled by the power of stories - MIT News

Extension of neuroscience-focused collaboration – SelectScience

Initial twelve-month collaboration successfully identifies hit compounds and progresses into hit-to-lead optimization phase

Metrion Biosciences Limited, the specialist ion channel CRO and drug discovery company, and LifeArc, a leading UK independent medical research charity, today announced an extension of their neuroscience-focused ion channel drug discovery collaboration, following the success of the initial twelve-month agreement.

The collaboration is focused on novel selective small molecular modulators of a specific two-pore domain potassium ion channel target, identified as likely to be involved in neurological pathogenesis. Having commenced in January 2019, both companies have exercised the option to extend the program for a further 12 months following the achievement of mutually agreed criteria. As a result of successes during the initial phase, where potent and efficacious hit compounds have been identified through a robust screening cascade (using a fluorescence assay, automated electrophysiology and manual patch clamp technique), the collaboration has now progressed into the hit-to-lead optimization phase.

Under the terms of the agreement LifeArc is responsible for all new chemical syntheses, with Metrion providing ion channel screening expertise. Metrion will continue to support target optimization using the companys extensive experience of developing validated screening assays for use against specific neuronal ion channels, or in a range of translational phenotypic disease-relevant assays, to thoroughly explore mechanism of action.

Dr Edward Stevens, Head of Drug Discovery, Metrion Biosciences, said: The extension of this collaboration is testament to the achievements of the combined team to date, and to our long-standing successful relationship with LifeArc. We are excited to be moving forward for an additional twelve months and progress the project to further advance research in this important field of neuroscience.

Dr Justin Bryans, Executive Director, Drug Discovery, LifeArc, commented: We are dedicated to supporting promising research that could have transformative benefits for patients. The success to date of this novel small molecule program with Metrion is very motivating, especially as this lies in one of our three priority therapy areas. We have a strong track record with Metrion, and we look forward to the next twelve months collaboration.

Do you want more of the latest science news straight to your inbox? Become a SelectScience member for free today>>

More:
Extension of neuroscience-focused collaboration - SelectScience

George Mashour, MD, Ph.D. Appointed as Chair of UM Department of Anesthesiology – University of Michigan Health System News

ANN ARBOR, Mich. Today, the U-M Board of Regents approved the appointments of George A. Mashour, M.D., Ph.D. as chair of the Department of Anesthesiology and the Robert B. Sweet Professor of Anesthesiology, effective December 1.

Dr. Mashour, formerly the Bert N. La Du Professor of Anesthesiology Research, has served the Medical School as associate dean for clinical and translational research and director of the Michigan Institute for Clinical and Health Research (MICHR) since 2015. He has also held the roles of associate chair for research in the Department of Anesthesiology since 2014, director of the Center for Consciousness Science since 2014, and executive director of translational research for U-Ms central Office of Research since 2016. Of these roles, he will relinquish all except for MICHR director, which he will continue to serve until a successor is named.

He received his medical degree and doctorate in neuroscience from Georgetown University, and studied neuroscience as a Fulbright Scholar in Berlin and Bonn. He completed his internship, residency, and chief residency at the Harvard Medical School and Massachusetts General Hospital. He was a fellow in neurosurgical anesthesiology at the U-M, and in 2007 was appointed assistant professor in the departments of Anesthesiology and Neurosurgery, with an additional faculty appointment in the Neuroscience Graduate Program. He was promoted to tenured associate professor in 2013, named the La Du Professor in 2014, and promoted to professor in 2017.

Dr. Mashour is an internationally recognized expert on the neurobiology of consciousness and general anesthesia. He has authored more than 200 publications and been the lead editor of five textbooks on anesthesiology and neuroscience. He currently serves as the principal investigator of several major NIH grants in the field of neuroscience, academic anesthesiology and translational science. He also serves on the steering committee of the NIH Clinical Translational Science Awards program and as a member of the NIH Surgery, Anesthesiology, and Trauma study section.

He serves on the boards of the Association of University Anesthesiologists and the International Anesthesia Research Society. He has received numerous institutional awards as well as national honors that include the Presidential Scholar Award from the American Society of Anesthesiologists and election to the National Academy of Medicine.

Dr. Mashour succeeds Kevin Tremper, M.D., Ph.D., who served as chair of Anesthesiology since 1990.

Said Mashour, It is a privilege to serve in this role. The Department of Anesthesiology is deeply committed to exceptional patient care, the education of outstanding clinicians and scientists, and research that improves health. I look forward to working with team members across the department, Michigan Medicine, and the community to fulfill this important mission.

Read more:
George Mashour, MD, Ph.D. Appointed as Chair of UM Department of Anesthesiology - University of Michigan Health System News

Cutting Through the Headlines: Are Scientists Really Growing Sentient "Mini-brains"? – Technology Networks

Neuroscience 2019, the worlds biggest conference of brain science, finished just over a month ago. In the wake of some particularly inflammatory headlines, we take a closer look at whether claims that new model systems for studying the brain could produce sentience in a jar have any truth to them.

It must be a matter of some regret to researchers that, when they were first created a few years ago, the temptation to call the three-dimensional balls of neural tissue mini-brains proved too strong to resist.

At the Society for Neurosciences 2019 conference, the catchy, headline magnet term mini-brain had very much been taken out of the lexicon. In a press conference that we attended, the gathered scientific panel had obviously been encouraged to stick to a new term: brain organoid. More abstract than mini-brain, and certainly less likely to feature on a tabloid front cover.

As a session introducing the latest advances in organoid research drew to a close, the rebrand appeared to have worked. There had been no questions about Futurama-style talking heads in jars, or questions of existential cellular dread. So far. But by the end of the session, a dispute rose which highlighted some real doubts among researchers in the field, indicating that the topic of consciousness, let alone consciousness in a jar, was far from settled. But before we get to that, lets take a look at the science behind brain organoids.

The previous days plenary had gone very smoothly. A truly excellent talk by Harvard Stem Cell Institute (HSCI)s Paola Arlotta had shown the care and detail that had gone into organoid science.

Arlotta began her talk by outlining why researchers might consider making three-dimensional neuro-balls (my submission for what brain organoids should really be called) in the first place. Studying the brain is really hard. Its complexity is unrivaled by any other organ in the body and humans tend to object if you try and remove their brain to get a closer look.

As such, biomedical researchers have mainly focused on one of two approaches when attempting to model the incredible intricacy of the brain:

Clearly, neither route is perfect, and teams like Arlottas have been seeking a new model that could potentially take the best of both worlds and put them in one system. Brain organoids were meant to be that model. A lot of work has gone into enabling the creation of such a system, including huge steps in our tools for studying brain development. This requires handling data from more than just one cell type, as Arlotta explained in her lecture:

There are no individual subtypes that develop in isolation. They all develop together and it's really an orchestrated dance of many different cell types being generated. This is the complexity that we have always wanted to provide all at once. All cells, all genes, all stages, except we have never had the technology and methodology that would allow us to do that.

Forget a "brain in a jar". This image shows what pea-size brain organoids at 10 months old actually look like, grown in the Muotri lab at UCSD. Credit: Muotri Lab/UCTV

This changed a few years ago, when we invented amazing single-cell level genomics approaches that now allow us to sequence thousands, to hundreds of thousands, to millions of cells from any tissue any stage of any organism. Arlotta continues. This innovation, alongside computational methods, has permitted researchers to take a widescreen view of brain development.

For Arlottas team, capturing this global picture meant a lot of meticulous work: Basically, we set off to purify and refine, at a single cell level, every single cell of the developing somatosensory cortex, which we sampled every day in the mouse until about P1 [postnatal day 1] when the majority of the cells had been generated. The result: beautiful, detailed plots of the gene expression underlining the development of this region of the mouse brain.

With this information, a blueprint for how a brain organoid should develop, Arlottas team could then go on to create organoids.

The simplicity of this process is something that made even Arlotta do a double take at first. I was skeptical for many years, but then Yoshiki Sasai published what I think is a seminal experiment. Basically, what was shown is that if you take a 3D cluster of embryonic stem cells and you culture them in a dish, without adding much from the outside, these cells have the ability to self-organize and undergo self-morphogenesis to give rise to an optic-cup like structure. This cup has retinal and other cells of the mature eye, responds to light, and even forms morphological layers like an eye does. Sasais work, alongside that of Madeline Lancaster, formed the blueprint for future organoid work. It was published just seven years ago. This is a field advancing at a breakneck speed.

As such, its a field of great interest to the press and general public. To answer questions on her research, Arlotta joined UCSFs Arnold Kriegstein and Michael Nestor from the Hussman Institute for Autism for the next days panel discussion.

The main points from the panel were as follows:

The latter point, addressed by Kriegstein, seems pivotal to the future of this field. He presented results from single-cell RNA-seq (a technique that analyzes genetic material in base-by-base detail) scans of organoids and human brain tissue. The cell types are broadly similar to the ones you find in normally developing tissue, but the problem is that our genetic analysis is showing that they lack specificity, as though their identify is a bit confused, explained Kriegstein.

Images of brain tissue contrasted with organoids clearly show the reduced complexity of the model brains, with fewer cell types and a different developmental timeline. Kriegstein showed that the organoid cells are under a type of cellular stress that seems to limit their ability to mimic normal cells (although when the cells were transplanted into a mouse brain, creating a human-mouse chimera, the stress seemed to reduce). This is both an issue for the organoids potential as a model for brain disease, and for any claims that they might in any way become sentient in any human way.

Arlottas data had suggested that organoids were able to be kept in bioreactors, alive for up to four years. Could the simplified organoids simply not be old enough yet? This is not an adult brain that you make. Its not even a complete younger brain, its very primitive and reductive. There is a limit to what you can do in culture; they only grow to a certain size and they only make certain cells, said Arlotta.

This is a cross-section of a brain organoid, showing the initial formation of a cortical plate. Each color marks a different type of brain cell. Credit:Muotri Lab/UCTV

This point didnt come from a member of the press, but from another researcher. This was Elan Ohayon, co-founder of the San Diego-based Green Neuroscience Laboratory (GNL), who had been quoted in The Guardian in the days before SfN, singing from a very different hymnsheet from the panel. In that article, Ohayon had said, "If there's even a possibility of the organoid being sentient, we could be crossing that line. We don't want people doing research where there is potential for something to suffer." The GNL is also opposed to any captive animal experimentation. In the press event Ohayon professed at length, to a stony-faced response from the panel, why he believed they were underestimating the risk of an ethically dubious outcome from their research.

Ohayon finished by asking whether the researchers felt that the field should be put on hold until more was known about consciousness in the organoids. Nestor, in response, highlighted the lack of cytoarchitecture present to support the conditions needed for sentience, but he was cut off by a sharp retort from Ohayon. Thats incorrect. Actually thats my specialty, he began, before a stressed SfN staffer attempted to get him to sit down. Moving away from the microphone, Ohayon concluded, Its great that you are moving towards human-based research, the real concern is also this move towards chimera without thinking about sentience. You are underestimating where you are going, and its going to get there fast.

To say the least, Ohayons views seem quite at odds with that of the panel (the Green Neuroscience Laboratory did not immediately respond to request for comment for this interview). But, as with much in science, there is perhaps a truth to be found in between these two divergent positions.

Talking later to UC San Diego Professor Alysson Muotri, who has used brain organoids in his lab for years, we began to find evidence of where that midpoint might stand. He explains that he led a panel discussion on ethics in brain organoids, which you can watch below. The panel consisted of experts in both neuroscience and philosophy. Disagreements began with the basic definition of what consciousness is. Christof Koch, Chief Scientist and President of the Allen Brain Institute suggests that the cortex alone could be sufficient for consciousness, whilst Patricia Churchland, and Emerita Professor at UC San Diego suggested that other regions, like a brain stem or thalamus would be required. Other panel members, Muotri told me, argued that: You need a body, a brain connected to a body, otherwise there will be no consciousness coming from the tissue. How can we have a debate about creating a conscious being in a jar, if we dont really know what consciousness is in the first place?

What Muotri does suggest, in place of a halt to research, is a better effort to conduct studies in a more ethical way, similar to how scientists aim to conduct animal research. We don't treat animals badly just because they're for research. We try to give them a good lifestyle. So for the organoids it might be exactly the same thing. We just have to agree on how we should do it. I mean, what are the conditions that we need to keep them alive? How do we discard them? How many of them we should use to answer specific scientific questions? So these are the kinds of debate that we can start right now. But I just think it would be unfair to stop science.

So the potential of organoids, or brains-in-a-dish, or mini-brains, or whatever you want to call them, may be undeniable, but so is the potential of science to go faster than it intends. What scary headlines dont reflect is that scientists are well aware of both these things.

Originally posted here:
Cutting Through the Headlines: Are Scientists Really Growing Sentient "Mini-brains"? - Technology Networks

Global Neuroscience Antibodies and Assays Market 2019 by Manufacturers, Countries, Type and Application, Forecast to 2025 – News Agree

The Global Neuroscience Antibodies and Assays Market report study includes an elaborative summary of the Neuroscience Antibodies and Assays market that provides in-depth knowledge of various different segmentations. Neuroscience Antibodies and Assays Market Research Report presents a detailed analysis based on the thorough research of the overall market, particularly on questions that border on the market size, growth scenario, potential opportunities, operation landscape, trend analysis, and competitive analysis of Neuroscience Antibodies and Assays Market. The information includes the company profile, annual turnover, the types of products and services they provide, income generation, which provide direction to businesses to take important steps. Neuroscience Antibodies and Assays delivers pin point analysis of varying competition dynamics and keeps ahead of Neuroscience Antibodies and Assays competitors such as Thermo Fisher, Abcam, Bio-Rad, Merck, Cell Signaling Technology, Genscript, Rockland Immunochemicals, BioLegend, Santa Cruz Biotechnology, Roche, Siemens.

View Sample Report @http://www.marketresearchstore.com/report/global-neuroscience-antibodies-and-assays-market-2018-by-392257#RequestSample

The main objective of the Neuroscience Antibodies and Assays report is to guide the user to understand the Neuroscience Antibodies and Assays market in terms of its definition, classification, Neuroscience Antibodies and Assays market potential, latest trends, and the challenges that the Neuroscience Antibodies and Assays market is facing. In-depth researches and Neuroscience Antibodies and Assays studies were done while preparing the Neuroscience Antibodies and Assays report. The Neuroscience Antibodies and Assays readers will find this report very beneficial in understanding the Neuroscience Antibodies and Assays market in detailed. The aspects and information are represented in the Neuroscience Antibodies and Assays report using figures, bar-graphs, pie diagrams, and other visual representations. This intensifies the Neuroscience Antibodies and Assays pictorial representation and also helps in getting the Neuroscience Antibodies and Assays industry facts much better.

.This research report consists of the worlds crucial region market share, size (volume), trends including the product profit, price, Value, production, capacity, capability utilization, supply, and demand and industry growth rate.

Geographically this report covers all the major manufacturers from India, China, the USA, the UK, and Japan. The present, past and forecast overview of the Neuroscience Antibodies and Assays market is represented in this report.

The Study is segmented by following Product Type, Consumables, Instruments

Major applications/end-users industry are as follows Pharmaceutical & Biotechnology Companies, Academic & Research Institutes, Hospitals & Diagnostic Centers

Neuroscience Antibodies and Assays Market Report Highlights:

1)The report provides a detailed analysis of current and future market trends to identify the investment opportunities2) In-depth company profiles of key players and upcoming prominent players3) Global Neuroscience Antibodies and Assays Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)4) Strategic recommendations in key business segments based on the market estimations5) To get the research methodologies those are being collected by Neuroscience Antibodies and Assays driving individual organizations.

Research Parameter/ Research Methodology

Primary Research:

The primary sources involve the industry experts from the Global Neuroscience Antibodies and Assays industry including the management organizations, processing organizations, analytics service providers of the industrys value chain. All primary sources were interviewed to gather and authenticate qualitative & quantitative information and determine future prospects.

In the extensive primary research process undertaken for this study, the primary sources industry experts such as CEOs, vice presidents, marketing director, technology & innovation directors, founders and related key executives from various key companies and organizations in the Global Neuroscience Antibodies and Assays in the industry have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.

Secondary Research:

In Secondary research crucial information about the industry value chain, the total pool of key players, and application areas. It also assisted in market segmentation according to industry trends to the bottom-most level, geographical markets and key developments from both market and technology oriented perspectives.

Inquiry for Buying Report: http://www.marketresearchstore.com/report/global-neuroscience-antibodies-and-assays-market-2018-by-392257#InquiryForBuying

Thanks for reading this article, you can also get individual chapter wise section or region wise report versions like North America, Europe or Asia. Also, If you have any special requirements, please let us know and we will offer you the report as you want.

Link:
Global Neuroscience Antibodies and Assays Market 2019 by Manufacturers, Countries, Type and Application, Forecast to 2025 - News Agree

Mice with autism mutation may be indifferent to social scents – Spectrum

Distinct stink: Mice missing a key autism gene respond similarly to nonsocial and social smells.tiripero / iStock

Neurons in mice that lack an autism gene called CNTNAP2 do not differentiate well between social and nonsocial smells, according to a new study1. These neurons are located in the prefrontal cortex a brain region that controls social behavior and fire haphazardly.

The findings suggest that these differences drive the social problems in the mice and perhaps in autistic people with mutations in the gene. The results appeared 25 November in Nature Neuroscience.

The work is some of the first to explore the way neurons in the prefrontal cortex recognize and decipher, or encode, social information.

We know from many studies that the prefrontal cortex is somehow important for social interactions, says lead author Ofer Yizhar, professor of neuroscience at the Weizmann Institute of Science in Rehovot, Israel. But we actually know very little about how social information is encoded.

In people, mutations in CNTNAP2 are linked to autism and language impairments, as well as to altered brain connectivity.

According to one leading theory, autism arises from an imbalance between excitatory and inhibitory activity in the brain. Mice missing CNTNAP2 show such an imbalance, although it is unclear whether the imbalance contributes to their autism-like traits.

One possibility is that the signaling imbalance prevents neurons from firing synchronously in response to social cues, Yizhar says.

The study is the first to directly link this sort of noisy brain activity in autism mice to problems with their social behavior, says Dan Feldman, professor of neurobiology at the University of California, Berkeley, who was not involved in the work. That could be quite important if this turns out to be common across different forms of autism, he says.

Yizhars team recorded the electrical activity of neurons in the prefrontal cortex of male mice, using an electrode array. The array uses filaments embedded in the mouses brain to monitor up to 30 neurons at once.

A cable connects the head-mounted array to a recording system, allowing the mice to roam freely in a chamber into which the researchers piped one of five scents: social odors from unfamiliar male or female mice; peanut butter oil, which mice find attractive; banana oil, which mice are indifferent to; and a chemical called hexanal, which mice dislike.

The researchers exposed mice to these odors for several days. They then recorded the activity in the mices prefrontal cortex while exposing the animals to each smell one by one.

Twice as many prefrontal neurons in control mice respond to the social odors as to the nonsocial ones, the researchers found. These neurons also fire more frequently than those in control mice do, and in distinct patterns for social versus nonsocial smells.

[This] indicates that the prefrontal cortex is somehow differently classifying [odors] based on this property, says Yizhar.

Other brain regions that respond to smell, such as the olfactory cortex, do not show a preference for social odors, according to previous studies suggesting that the prefrontal cortex plays a unique role in interpreting smells.

The prefrontal cortex integrates multiple levels of information from converging brain regions in order to encode not the odor itself, but its social value, Yizhar says.

The researchers then recorded the mices neuronal activity as the animals experienced the five odors for the first time and again two to five days later.

As before, control mice distinguish social and nonsocial smells and they do this even better at later time points, suggesting that experience helps them refine their response to smells.

In the mutant mice, however, neurons in the prefrontal cortex respond similarly to social and nonsocial odors. They also failed to show any kind of refinement with experience, Yizhar says. They pretty much stayed the same.

And yet the mice have no trouble detecting the smells.

What they found is really interesting, says Audrey Brumback, assistant professor of neurology at the University of Texas at Austin, who was not involved in the work. The animals can still register smells in the same way, but the way that they are encoding social smells is fundamentally different.

Even in the absence of smells, neurons in the prefrontal cortex of the mutant mice fire more often than those in controls, and that the pattern of firing is less coordinated. The noisier the firing, the worse the neurons are at categorizing smells. The mices response to odors show this trend almost perfectly, Yizhar says. Its really striking.

He and his colleagues plan to see whether these findings hold in other mouse models of autism. They are also testing whether boosting or silencing the activity of neurons in the prefrontal cortex affects how this brain area processes social smells.

The rest is here:
Mice with autism mutation may be indifferent to social scents - Spectrum

Where Will 1000 People Park? – New Haven Independent

Dwight neighbors revved up concerns about increased parking and traffic from Yale New Haven Hospitals planned new neuroscience center and renovated Saint Raphael Campus while a hospital spokesperson pointed out that the many new patients, doctors, staff, and visitors for the nearly $1 billion project will have to park somewhere.

Neighborhood historic preservationist Olivia Martson led the charge against the hospitals proposed parking plan Tuesday night during the regular monthly meeting of the Dwight Community Management Team in the Amistad Middle School gymnasium on Edgewood Avenue.

That parking plan is to support the prospective new $838 million neuroscience center and St. Raphael campus renovation that YNHH is looking to build out over the next five years on the blocks bounded by Chapel Street, Sherman Avenue, George Street, and Orchard Street.

In three 4-1 votes, commissioners voted to pass along a favorable report to the Board of Alders for a proposed amendment to the Medical Area Overall Parking Plan (MAOPP), a proposed amendment to the city ordinance text and maps that describe the St. Raphael campuss Planned Development District (PDD), and a proposed license agreement for the construction of a new pedestrian bridge over Orchard Street.

Holding up a 2008 map of New Haven speckled red and yellow with all of the citys existing surface and garage parking sites, Martson urged the roughly 20 neighbors who showed up Tuesday night to go to City Hall on Dec. 10.

Thats when the Board of Alders Legislation Committee will be holding public hearings on the neuroscience center parking plan.

She called on neighbors to testify about how the hospitals planned new parking garage at Chapel Street and Orchard Street and its planned expansion of the nearby Orchard Street Garage will affect Dwight and West River.

YNHH Senior Vice President Vin Petrini shared a design rendering of the proposed new garage with the Independent for this article (pictured above).

While hospital execs did not share this picture at last months City Plan Commission hearing, YNHH Senior Vice President Operations Michael Holmes did estimate that the new research center and medical facilities will increase the campuss current parking demand by roughly 1,000 spaces.

We dont want it to impact the neighborhood so much that no one will live here, added Martson. We have to come up with a plan so that our neighborhood grows in a responsible way. I dont want to see us become just a place where people drive in and drive out.

The hospital currently leases parking spaces at various city-owned surface lots in the area, he said. But several of the larger lots, including the former Coliseum site and the Sherman/Tyler lots, are likely to be scooped up by developers in the not-too-distant future.

He said YNHH already does a lot to encourage staff to use alternative forms of transportation. The hospital subsidizes bus passes and train tickets for its employees and runs a free shuttle service, including to park-and-ride pick-up spots in surrounding suburbs.

Were trying, he said.

But it still needs to provide some kind of parking, especially considering the scope of the project.

There will be no egress or ingress on Orchard Street for the new planned garage, he said, to reduce the car flow on that already congested block.

Martson, Walton, and several other neighbors Tuesday remained unconvinced.

The neighborhood already has large parking garages on Orchard Street and at the southwestern corner of George and Orchard, let alone the planned new 763-space garage for nearby Legion Avenue.

We only have one shot at this, she said, and thats gonna be it.

The hospital should instead consider investing in housing for the area, she said, and not in building new garages. I know that might be a real dream, she added, but its worth adding to the mix.

If the hospital doesnt build these new garages, asked neighbor Richard Crouse, where will these new cars go?

I dont have the answer, Martson admitted, but hopefully there is some alternative to just building more and more garages.

We need the science building, said management team Chair Florita Gillespie (pictured). And we need to live here, in a safe, healthy community. We dont want all this pollution. So what are we gonna do about it?

She didnt have an answer either Tuesday night. She also called on neighbors to go to City Hall on Dec. 10 and to keep working with the alders, the city, and the hospital to come up with the best solution for all parties.

Decades of disinvestment in the areas bus, rail, walking, and biking infrastructure is coming home to roost.

Air quality issues, primarily caused by fossil fuel use, are killing thousands of people in Connecticut, part of the tens of millions of people being killed by air pollution worldwide.

Remember when the Board of Alders declined the money that President Obama gave to New Haven for a new combined streetcar-bus system, that would have created a trunk line to major employers, streamlined connection points, and allowed the regions bus system to take a great leap forward?

That combined with very modest increases to parking costs would have solved this issue. President Obamas streetcar-bus system grant was instead used for a project that will have marginal impact.

Going forward, maybe Yale would be willing to chip in the $50,000,000 that Elicker has requested if it could be earmarked to transportation? Or maybe the state would finally realize that its entire economy is dependent on the success of places like New Haven and Stamford, and be willing to chip in the funding for that instead of continuing to widen highways?

Until those things happen, adding major pedestrian, bus stop and bicycle improvements to the area would cost about $800,000. Even though they would represent about 0.1% the total cost of this new building project, they are somehow not on the table here.

Honestly, I feel that the new neuroscience center should provide new shuttle buses to connect people from every existing garage in the area to the campus of where the new center will be. It may be a good to connect people back YNHHs main campus as well.

I really dont see the need to add a new garage if theres already going to be one thats built on the old route 34 connector right next door to whats eventually going to be a new hotel.

I definitely agree that instead of building more garages there should be more housing. Too much parking opportunities usually bring more cars and more cars only adds more congestion. Which is certainly not good for the air quality. More housing is so much better than having more parking. Especially in an urban setting where you have plenty of options besides driving due to being other modes of transportation.

Only a scant two and a half blocks away from the hospital are the existing Frontage road lots. Take a quick look at a google map of the area. Most of those spaces are empty. Two or three blocks is not a difficult walk. Doesnt the Medical/Health establishment admonish us all to incorporate more exercise into our daily routines? Or is this how the hospital drums up more business? But if you really are that lazy, an electric shuttle bus service would not be very expensive. The CT Bus Co. has already made plans to put clean air electric busses in to service. Less parking spaces mean less cars. More parking spaces mean more cars. If you build it they will come.

Logic tells me that not building it would lead to the worse neighborhood street parking nightmare ever seen. Of course the city could benefit from increased parking fine collections for blocked driveways, fire hydrants, and pedestrian crosswalks.

One option that could be in everyones interest is for YNHH to expand its transportation demand management program. As the article notes, YNHH already subsidizes bus passes and takes other steps to reduce the number of employees driving to work alone. If YNHH sweetened these incentives, presumably more employees would take advantage of them. This could reduce the need for additional parking. Building garage spaces is wicked expensive, and reducing demand for garage spaces could be in YNHHs self interest, as well as being in the interests of the neighborhood.

Read the original:
Where Will 1000 People Park? - New Haven Independent

The Anatomy of a Perfect Holiday Board – D Magazine

A well-composed holiday board can set the stage for main-course merriment. But the at-your-leisure crowd favorite can be a bit intimidating to piece together just right. We sat down with Olivia Genthe owner of Uptowns caf and charcuterie board concept, Fount Board and Table, set to open in mid-December to gather expert advice on curating an impressive and inviting holiday board this season.

Here are her five essentials to help you build a better board.

When it comes to choosing cheese, Genthe suggests opting for a salty and creamy triple cream over classic holiday brie. For a little seasonal flair, spruce-wrapped goat cheese is among her go-tos, while a hard, smoked bleu cheese can offer guests with texture and taste aversions an easy way to enjoy.

Be sure to include cracker, protein, and spread options that guests with dietary restrictions can enjoy. I try to make sure that we have a dairy dip, a non-dairy dip, and a vegan or plant-based thing thats different, Genthe says. Sweet potato crackers are among her gluten-free go-tos, and she suggests bresaola beef as an alternative to classic pork pairings.

Genthe recommends investing in a high-quality, cultured butter that can be served simply or as a complement to other board ingredients. German and Italian butters are her favorites as they provide a creamy texture and subtle flavor that many guests mistake for a cheese option.

Choose herbal garnishes that will complement your boards flavors not overtake them. Be mindful of the stuff that you put physically next to the food, Genthe says. Though spruce, pine, and rosemary can add seasonal scents and visual interest to your boards, they can overpower the flavors in the foods they touch. Genthe recommends selecting a seeded, silver dollar, or willow eucalyptus from Central Market instead.

Genthe advises choosing one item to place on your board that tells your story or lets a particular guest know you are thinking of them. This can be a fruit that brings back memories of your late grandfather, a mustard from your hometown, or even your favorite flower. Its to celebrate each other and who and where you come from, Genthe says.

See the rest here:
The Anatomy of a Perfect Holiday Board - D Magazine

Greys Anatomy Contributed To Public Awareness Of Sexual Assault Report – Deadline

An Oklahoma State University study has concluded that an episode of ABCs Greys Anatomy medical drama contributed to heightened public awareness of sexual assault.

The study,published in the journalJAMA Internal Medicine earlier this month, claimed that the March episode, Silent All These Years,helped raise the profile of the group RAINN (Rape, Abuse, and Incest National Network). A key was the call-out by series star Ellen Pompeo at the end of the episode, encouraging victims to call the organizations hotline.

The OKU research found that searches for the terms RAINN spiked by 41 percent and rape by 8 percent following the episodes airing. On Twitter, tweets with sexual assault hotline and RAINN increased by more than 1,000 percent. Beyond social media, calls to RAINN increased by 43 percent in the 48 hours after the episode, the organization claimed.

In the episode, a patient named Abby (played by Khalilah Joi) was sexually assaulted, but reluctant to report the crime because she feared not being believed.

Abby was eventually convinced to undergo a sex assault forensic exam. As Abby is wheeled into surgery to fix a tear in her diaphragm, all the female hospital employees line the hallway to the OR, shielding a skittish Abby from males.

Watch the video of that clip above.

Link:
Greys Anatomy Contributed To Public Awareness Of Sexual Assault Report - Deadline

‘The feeling I had after that game was heartbreaking’ – The anatomy of a Leinster final shock – Independent.ie

Mid-December, and seemingly mid-apocalypse, it was, as Crokes forward Mick OKeeffe told the AIB-sponsored 'Club Chronicles' mini-documentary about the saga, "like the trenches in the Battle of the Somme".

Magee, writhing in the mud, was simultaneously immobilised by agony and unable to lie still such was the excruciating cold.

When he finally rose, the distinctive purple and gold of Crokes was barely visible under the quilt of muck and earth on his jersey. After 60 torturous minutes, the score stood at 0-7 to 0-7.

It being a replay, match regulations stipulated extra-time.

ire gs frenzied pursuit of their equalising point had drained every last droplet of energy from the team, though. So Joe Murphy, one of their players and the current manager of the Carlow club, approached referee Brian White.

"I knew we were spent at that stage," he admitted in the film. "Extra-time wasnt going to suit us. So I went over to Brian and I said: 'look Brian, my eyesight is very, very bad. Its going to become a health and safety issue if we play extra-time. I can barely see now. If something happens, someone is going to have to be held responsible.' It was sort of a bluff, just to see if we could do anything.

"But I think Brian had enough of the day as well. He was freezing as well. So he said 'OK, well go to a third game'.

That game was played on January 31, 1999 in Newbridge, the same venue as the first draw.

Ten minutes in, ire g were 1-5 to 0-1 up. Their goal was scored by Willie Quinlan, who missed the second match after having two of his ribs broken in the first game after a collision he wrongly suspected had involved Magee.

In the end, ire g won by three.

The result devastated Magee, who had invested heavily in trying to win a second provincial title for his club after his grandfather passed away during the saga.

"I was trying to do it for my Mam, my father and my family," he reflected tearily all of 20 years later.

"The feeling I had after that game was heartbreaking. You put your whole life on hold."

The story of that game was retold as a classic of the club fairy tale genre, the small side overcoming disadvantages of population and size to knobble the big one.

Yet the histories of the two clubs at the time made a fallacy of the easy clich.

"That was their fifth Leinster title in seven years," as Magee points out now. "And yet, for some reason, we were heavy favourites."

It wouldnt be the last time Magee found himself in the role of vanquished Goliath in a Leinster club final.

Last year he was joint-manager of Crokes when they were beaten by Mullinalaghta, the half-parish on the Longford/Cavan border who became the first club from Longford to compete in a Leinster final.

The GAA nation rejoiced. Size didnt matter after all.

Heart. Pride. Parish.

These were celebrated as forces far stronger than the benefits of numbers and facilities.

The Friday after the final, the Mullinalaghta squad made an appearance on The Late Late Show.

"That was pretty hard," Magee admits now.

"Like, Mullinalaghta didnt have the monopoly on heart and desire and the sense of parish.

"Thats not why they beat us. They beat us because they played better in the final and fair play to them.

"Stillorgan is seen as this big, populated area and yeah, our membership has shot through the roof. But were still proud of our parish, even though its a bigger one.

"Any time weve won a county championship and you go on in Leinster theres such a buzz and a vibe around the club.

"It brings everyone together and its a special thing to be part of. Thats the very same for a big, Dublin club as it is for a small rural one."

The anatomy of a Leinster club final shock is one Magee has studied in painful depth.

For a start, size is over-rated. Club success is about the blend of the people in your squad at the relevant moments, not the number of quality of players who dont make it.

"Peoples perception of club football is always coloured by their perception of inter-county football," he stresses.

Magee has won and lost in Leinster and he is convinced the intricacies of winter football are too unpredictable to negotiate without fortune and favour.

Late in the first game against ire g in 1998, Ray Cosgrove bent a shot from under the stand in St Conleths Park towards the town end goal.

To most people in Newbridge that day, the curve of his kick had lured it comfortably inside the post, although the umpire waved for a wide.

Last year, as Magee recalls, Crokes conceded a penalty in the last minute to Mullinalaghta.

Paul Mannion had blazed a scorching trail through the Dublin and Leinster championships but a hamstring injury finally caught up with him.

Ditto Cian OSullivan.

And the extreme elements under which these games are played form the perfect conditions for a surprise.

"Club football in December is completely different to club football even at the end of October," Magee reckons.

"The ground is different.

"You cant recover from making a mistake in winter football the way you can in summer football because of the conditions.

"Winter football is a huge leveller when it comes to pace around the field."

Experience is a strong currency.

Last year was Crokes' first Dublin SFC title in eight years and their turnover of players was such that only a handful had been part of their last Leinster campaign.

Mullinalaghta had completed a three-in-a-row of Longford titles and their graph in Leinster was pointing skyward after two competitive winters.

It stood to them against Crokes.

As the possibility of one of the shocks of the GAA season rose with each wasted Crokes possession and each turnover Mullinalaghta forced, the Longford side seemed to cling ever more tightly to their script while the Dublin team forgot theirs.

"We went away a bit from the game plan, which happens when youre under pressure and you dont have that sort of experience," Magee says. "We invited trouble on to ourselves and we got punished for it.

"But they were a much more experienced side than we were. The same with ire g.

"They would have much more recent experience going into the Leinster championship than Ballyboden."

On Sunday, ire g compete in their first Leinster final since beating Kilmacud Crokes on the last day of January, 1999.

They play a Ballyboden St Endas team who have made a habit this year of starting games slowly and finishing like a bullet train.

For all the Firhouse teams expected presence in Portlaoise as soon as they won Dublin, ire g are have been edging back to a provincial final these past three years.

And given how vivid their memory of their golden years is, theyll have envisaged the possibility of being kings of Leinster again as soon as they won Carlow.

Other than St Vincents and Portlaoise (seven each), no team has as many Leinster titles as ire g, and no-one in the competitions history has had such a concentration of success as they had in those seven years in the nineties.

In an organisation as obsessed with tradition as the GAA, that can have a deep effect on a teams mindset.

Sen Gannon, one of their key men this year, said as much last week.

"Youd have to have this goal in your sights. Its attainable. Its achievable," he stressed.

"It probably comes from the history of the club and the success in the ninetieswere confident people."

As their manager, Joe Murphy prophetically predicted at the start of this year when he contributed to the AIB video about ire gs last great triumph.

"This club is always chasing.that chase will always remain."

Vote in the Irish Independent Sport Star Awards and you could win the ultimate sports prize.

Prizes include, tickets to Ireland's against Scotland in the Six Nations, All Ireland football and hurling final tickets and much more.

Simply click here to register your vote

Online Editors

The rest is here:
'The feeling I had after that game was heartbreaking' - The anatomy of a Leinster final shock - Independent.ie